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SUMMARY

The effects that artificial dissipation has on numerical solutions of the
transonic Full Potential Equation (FPE) are investigated by comparing the arti-
ficially dissipative FPE to a Physically Dissipative Potential (PDP) equation.
Analytic expressions were derived for the variables C and Mc that are used
in the artificial density formulation. It was shown that these new values gen-
erate artificial dissipation which is equivalent to the physical dissipation
which exists in the PDP equation. The new expressions for the variables C
and M. can easily be incorporated into the existing full potential codes
which are based either on the artificial density or on the artificial viscos-
ity formulation. A comparison of Physically Dissipative Potential (PDP), Arti-
ficial Density or Viscosity (ADV), Artificial Mass Flux (AMF), and ADV with
variable C and M¢ formulation (MCC) is also presented.

INTRODUCTION

A mathematical model for nondissipative, irrotational, compressible,
inviscid flows is known as the Full Potential Equation (FPE). Numerical tech-
niques used for integrating the FPE in transonic shocked regions require addi-
tion of artificial dissipation in an attempt to stabilize these schemes. The
numerical dissipation must be added in a fully conservative form if transonic
flows with shocks are to be computed accurately. The artificial dissipation
usually has the form of artificial viscosity (ref. 1), artificial density
(refs. 2 and 3), or artificial mass flux (refs. 4 and 5). Although these
schemes have been fairly successful, the amount and the form of the artificial
dissipation which is required in specific cases is usually determined in an
ad hoc manner (ref. 5). In this work, the artificially dissipative FPE, that
is, FPE with an Artificial Density or Viscosity formulation (ADV) and the FPE
with an Artificial Mass Flux (AMF) formulation were compared to a recently
derived Physically Dissipative Potential (PDP) equation (ref. 6). From these
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comparisons, a new form of numerical dissipation has been derived which has
physical origins and an analytic formulation for the constants presently used
in the ADV. This new formulation is termed variable M. and C or (MCO)
formulation.

PHYSICALLY DISSIPATIVE POTENTIAL (PDP) EQUATION

Dulikravich and Kennon (ref. 6) have derived a new mathematical model
which governs irrotational, nonisentropic, viscous flows of calorically perfect
gases without body forces, surface tension, radiation heat transfer, internal
heat generation, and mass sources. This model includes the physical dissipa-
tion due to certain effects of shear viscosity, secondary viscosity, and heat
conductivity. The full three-dimensional version of their Physically Dissipa-
tive ‘Potential (PDP) equation can be expressed (ref. 6> in a canonical form as
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Here, s 1is the locally streamline aligned coordinate direction and m and

n are the mutually orthogonal remaining coordinates of the locally streamline
aligned Cartesian coordinate system. The left-hand side of this equation
represents the nondissipative FPE and the right-hand side represents physical
dissipation. Here, p is the local fluid density, ¢ is the local velocity
potential function, a is the local isentropic speed of sound, t is the time,
pu is the coefficient of shear viscosity, X is the coefficient of secondary
viscosity, p" 1is the coefficient of longitudinal viscosity u" = 2u + X, v

is the ratio of specific heats, M is the local Mach number, Re is the
Reynolds number (ref. 7), P; is defined (ref. 8) as the longitudinal Prandtl

number P; = Pr u'/u  where Pr = C_p/k is the Prandtl number and k 1is the
coefficient of heat conductivity.

A1l quantities have been nondimensionalized, that is,




where the critical quantities are indicated with the subscript *. If we
restrict ourselves to the study of normal shock structure, then the nondimen-
sional verison of equation (1) for steady flows is
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The one-dimensional version (eq. 3) of the PDP was numerically integrated

using a fourth-order Runge-Kutta integration scheme with ax = 10~/ and sev-
eral values for A/u. The results indicate (figs. 1 and 2) that the PDP can
produce shocks of various strengths depending on the specified value of the
ratio A/u. Specifically, Stokes hypothesis that X\/p = -2/3 leads to Rankine-
Hugoniot shock jumps, and A/u = -2 leads to isentropic shock jumps (ref. 9).
The values used in all test cases were: P = 3/4; y = 7/5; Re = 103.

ENTROPY GENERATION

Dissipation effects in a flowfield can be most rigorously evaluated by
computing the entropy generation equation due to viscosity and heat conductiv-
ity. It can be expressed as
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where & is the viscous dissipation function and S s the specific entropy.
All the variables were consequently normalized with their critical values.
Also, p" and X were nondimensionalized with w_, k with k_, and S with

R where the speed of sound is a2 = yRT. Then
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and the nondimensionalized one-dimensional version of equation 4 becomes

2 k _y - Dy

dsS " 2
Re pTo, Gr = W'(80° - o k[¢x¢xxx £ Go ) ] (6)

Notice that

(y-D 1 . . Coke
A8 SEL AN S Pl - (7
YR Cp r K,

Then, the normalized entropy generation equation for one-dimensional steady
flows without radiation and internal heat sources is
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or finally
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Notice that S in this equation is actually a nondimensional quantity S = S/R.
Equation (9) was integrated using fourth order Runge-Kutta scheme and several
values of (¢y)_o and A/p, while Re = 109. For comparison, the exact values
of the total entropy jump across a normal shock satisfying Rankine-Hugoniot
conditions can be found from
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where M; is the Mach number ahead of the shock. Comparison of the numeri-
cally computed and the exact values of the total entropy jumps are very good
(figs. 3 and 4) despite the fact that we neglected the influence of entropy
change on the value of p in equation (8). This result provides a detailed
picture of entropy variation through the compression shock with a strong maxi-
mum in the middle of the shock (ref. 6).

ARTIFICIAL DENSITY OR VISCOSITY (ADV) FORMULATION

The conventional formulation for artificial density (ref. 3) generates (in
the one-dimensional steady case) the following terms (ref. 5)
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where the constants C and n, and the constant cut-off (ref. 10) Mach number,
Mc’ are the input parameters. This equation is a result of using the follow-
ing values of artificial density, §, and artificial viscosity, f, in the
conventional form (ref. 3) of the Artificial Density or Viscosity (ADV)
formulation
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Both C and M. are arbitrary constants in the conventional ADV formulation
(ref. 3). The coefficient C 1is usually chosen to be of the order one

(ref. 5). The exponent n (ref. 5) is usually zero as in equation (12). The
cut-off Mach number M. is usually chosen (ref. 5) as having the constant




value between 0.8 and 1.0, although it should always be less than the post-
shock Mach number. Furthermore, M. does not affect the total shock jump,
although it strongly affects the shock thickness. Since the artificial viscos-
ity is a truncated version of the artificial density formulation and since the
directionally biased flux formulation (ref. 11) is equivalent (ref. 5) to the
ADV, only ADV will be discussed. Critical Mach number variations through a
normal shock resulting from the ADV formulation are shown in figure 5.

EFFECTS OF THE NUMERICAL DISSIPATION

Equating the coefficients of like derivatives in equations (3) and (11)
produces two simultaneous equations, namely
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These two equations can be solved for (u"/Re)gq and for (1/P¥)eq. The result
is
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These expressions provide physically equivalent values for (u"/Re)gq and
(1/Pr)e generated by the conventional formulations (ref. 3) of the artificial

density where C and M. are kept constant. Thus, we could now analyze the
physically equivalent dissipative features of the ADV formulation. For this
purpose, equations (15) and (16) were substituted in equation (9) and integra-
ted. The results indicate (fig. 6) that the ADV formulation generates entropy.
Moreover, when equation (17) is plotted (fig. 7) for three different constant
values of Mc it is noticeable that u. s not constant. Similar results

are obtained (fig. 8) when the equivalent Prandtl number, (P;)eq, is computed
from equation (16).



ARTIFICIAL MASS FLUX (AMF) FORMULATION

In addition to PDP, ADV, and MCC, it is possible to work with an Artifi-
cial Mass Flux (AMF) dissipation, where the entire mass flux (p4g) instead of
just p s differentiated in the locally upstream (refs. 4 and 5) direction.
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In the two-dimensional case, the resulting artificially dissipative full poten-
tial equation will contain nonphysical dissipation (ref. 5).
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The switching function § and the constant C in the AMF formulation were

evaluated (ref. 5) by equating the coefficients multiplying ¢sss and ¢ss¢nn

terms in the full two-dimensional AMF equation and in the PDP equation. Fig-
ure 9 shows that AMF formulation provides only isentropic shock jumps and that
it produces positive entropy change across a shock (fig. 10). This formulation
requires only the Reynolds number as the input parameter.

VARIABLE C AND M. (MCC) FORMULATION
If equations (13) and (14) are solved simultaneously for C and Mg, the

result is an analytic expression for variable values of C and M. that are
consistent with the physical dissipation generated by the PDP equation. Hence
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The new variable values for C and M. in the ADV formulation are analyti-
cally defined so that they duplicate the physical dissipation from the one-
dimensional version of the PDP equation. Substituting equations (21) and (22)
in equation (11) and using the fourth order Runge-Kutta integration scheme pro-
duced the results shown in figures 11 and 12. Thus, the variable Mc and C
formulation (MCC) is capable of producing Rankine-Hugoniot shock jumps if

Mu'= -2/3 and isentropic shock jumps if AN g -2,

SUMMARY

The artificial density (or viscosity) formulation as used in the existing
computer codes for the solution of the transonic full potential equation uti-
lizes constant, ad hoc values for the cut-off Mach number, Mc’ and a constant,

C, in the switching function {. Analytic expressions for both Mc and C
were derived that introduce the effects of physical dissipation. The existing
full potential codes that use artificial density formulation can easily accom-
modate this versatile and physically consistent numerical dissipation by evalu-
ating C and M. analytically at every point in the flow field. Moreover,
full potential codes can now be used for computing flows with both isentropic
shocks and with Rankine-Hugoniot shocks, since values of Re and A u o are

the input parameters. Consequently, the strengths and thicknesses of the
resulting shocks and the amount of entropy generated can be controlled with

the physically known coefficients.

Finally, table I summarizes the analytic forms of all three artificial
dissipation formulations (ADV, MCC, and AMF) and compares them with the Physi-
cally Dissipative Potential (PDP) flow formulation.
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TABLE I. — COMPARISON OF COEFFICIENTS MULTIPLYING CORRESPONDING DERIVATIVES OF ¢

IN FOUR

DIFFERENT PHYSICAL AND NUMERICAL DISSIPATION MODELS USED FOR THE NUMERICAL

INTEGRATION OF THE STEADY TWO-DIMENSIONAL FULL POTENTIAL EQUATION

FPE-PDP Physically
dissipative equation

FPE-ADV Artificial
density concept

FPE~AMF Artificial
mass flux concept

FPE-MCC Variable C
and Mc in FPE-ADV
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