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Viscous-Inviscid Computations of
Transonic Separated Flows Over
Solid and Porous Cascades

A complete viscous-inviscid interaction is performed thar reliably com‘: utes steady
two-dimensional, subsonic and transonic attached and separated flows for cascades
of airfoils. A full-potential code was coupled with both a laminanytransition/
turbulent integral boundary-layer/turbulent wake code and the ﬁnizf-d[fference
boundary-layer code using the semi-inverse methods of Carter and Wigton. The
transpiration coupling concept was applied with an option for a poroud|airfoil with
passive and active physical transpiration. Examples are presented which
demonstrate that such flows can be calculated with engineering accurdcy by these
methods. Carter’s update formula gives smoother solutions for a stron§ shock than
Wigton’s update formulas, although Wigton’s formulas are preferred in the early
coupling cycles. The computations show that passive physical transpzratﬁon can lead
to a lower drag coefficient and higher lift coefficient, a weaker shock, dnd elimina-
tion of shock-induced separation. The extent of the porous region and flermeability

Jactor distribution of the porous region must be chosen carefully

these im-

provements are to be achieved.

Introduction

Any meaningful computation of separated transonic two-
dimensional flows for cascades requires the inclusion of
viscous boundary layer and wake effects. Reviews of pro-
cedures for calculating viscous-inviscid interaction in tran-
sonic flow about isolated airfoils have been presented by
Olling [1}, Lock {2], Lock and Firmin [3], Melnik [4],
LeBalleur [5], Jameson [6], and Cebeci et al. [7].

The boundary layer can be calculated in the direct or inverse
mode. In the direct mode the velocity or pressure on the
matching surface between the viscous and inviscid part of the
flow field is specified. In the inverse mode some other quantity
(the forcing function) is specified, such as the displacement
thickness 6*, mass flux defect Q, or skin friction coefficient
C;. Present finite-difference and integral methods in general
must be operated in the inverse mode to calculate extended
separated regions in practical computations, when steady-state
first-order boundary layer theory is used (see [8] for an excep-
tion for a finite-difference method). An alternative way to
simulate massive separation is to compute the detached
streamline where the boundary layer separates from the airfoi}
and then use this streamline as part of the effective airfoil sur-
face {9, 10].

The matching between the inviscid and viscous calculations
can occur on any of three different surfaces: the surface of the
airfoil and the wake centerline, the displacement surface, or
the edge of the boundary layer and wake & [11]. In the first
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case an equivalent transpiration boundary condmdwn is used in
the inviscid calculation. This case will be called the transpira-
tion coupling concept. It obviates the necessity of egenerating
the inviscid grid after each coupling cycle and represents the
best existing method [1]. Several types of strong interaction
, called the
boundary
ess for the
g viscous
ed with the
ce. If these

methods have been devised. The simplest approac
semi-inverse method, computes part or all of th
layer and wake in the inverse mode. An initial
forcing function must be made. The result
boundary-layer edge velocity or pressure is comp.
inviscid velocity or pressure on the matching surf;
differ then the forcing function and the coupli boundary
conditions are updated. Several methods have b n proposed
for updating the forcing function during the vxsc Jus-inviscid
iterations by Carter {12], LeBalleur [13], Wigto [14), and
Gordon and Rom [15]. This type of strong interaction has
been favored by many investigators because it allows one to
make the minimum amount of changes to the inyiscid code,
which is usually more complex than the viscous

It should be noted that first-order boundary-
neglects the normal-pressure gradient effect dueito the cur-
vature of streamlines inside the boundary layer afild wake. In
the near-wake region this effect leads to a jump in|the tangen-
tial velocity component along the wake centerline in the in-
viscid code. It will be called the wake curvature effect and two
approximate theories have been proposed to corr t for it [4,
3]. ‘
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Porous Airfoils

Shock-free or nearly shock-free transonic dii‘rfoils and
cascades have favorable properties, such as minimum wave
drag and no or reduced shock-induced separation. To design
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such airfoils, one approach has been to modify the airfoil
shape [16]. Another method of achieving shock self-
cancellations is to modify the surface boundary conditions on
the airfoil, such as by allowing for physical transpiration by
making the airfoil surface porous [1, 17-23]. The latter ap-
proach may be applied in an active (or forced) transpiration
mode or in a passive transpiration mode. An example of a
passive method is allowing the plenum (cavity) pressure (under
the porous airfoil surface) to adjust to a value that is in
equilibrium with Darcy’s law for porous material and the ex-
ternal flow. In this case, the net mass flow through the per-
forated airfoil surface is zero.

The computer codes developed as a part of this [1] study can
simulate the passive transpiration effects of a perforated air-
foil surface with a cavity located underneath. Darcy’s law is
used to determine the physical transpiration velocity [17)

v,=a{p,—Dp.)

0=5/(Pals)
where p, is the airfoil surface pressure, P, is the plenum
pressure {assumed to be constant), o is the permeability factor,
& is the nondimensional permeability factor, and p, and g,
are the upstream density and speed, respectively. A value of &
= 0.6 corresponds to a geometric porosity of about 10 percent
[18]. The plenum pressure is computed from

D,=\ pdp,ds/\ pads
4 5 R

where s is the airfoil surface arc length. The physical transpira-
tion velocity normalized by the critical speed of sound is

a _—
v, oML p* Pu € P
a* ML S _p ds Po
s =
5 p' C

where the asterisk denotes a critical value.

Two distributions of & can be specified in the input of the
present version of the code [24]. These are a uniform distribu-
tion and a peaked distribution having a maximum inside the
porous region and smooth tapering to zero at the ends of the
region. The chordwise coordinates of the beginning (x,) and
end (x,) of the porous region and the location of the maximum
permeability (x,,) on the upper and lower sides of the airfoil
are input.

Integral Boundary-Layer Code

Laminar Boundary Layer. The boundary layer is assumed
to be divided into laminar, transitional, and fully turbulent
regions in the sireamwise direction. Near the leading edge of
the airfoi! the boundary layer is assumed to be laminar. The
attached laminar boundary layer is computed in the direct
mode by a modified form of a compressible Thwaites method
([25}; see Appendix A for details). The tangential inviscid
velocity on the airfoil surface wu; is specified. If laminar
separation is indicated, the boundary layer is in the present
code assumed to transition abruptly to fully turbulent flow.

Transition Region. Two options are available for determin-
ing transition. One option is to enforce abrupt transition at a
specified point (no transition region). The other option is to
calculate the transition region from the empirical method of
Abu-Ghannam and Shaw [26] modified for compressibility.
The start of transition is determined from an empirical cor-
relation for the incompressible momentum thickness Reynolds
number as a function of the free-stream turbulence level and
an incompressible streamwise velocity gradient parameter.
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sition region and the momentum thickness at the end of transi-
tion. Additional correlations then allow the momentum
thickness, shape factor, and skin friction cdefficient in the
transition region to be computed. Stewartsons [27] transfor-
mation is used to relate incompressible and compressible
quantities. The method is invalid when the tfansition region
includes separated flow or a shock wave or €xtends into the
wake (see Appendix B for details).

Other correlations are used to determine the c%em of the tran-

Turbulent Boundary Layer. The turbulent}boundary layer
and wake is calculated with the lag-entr
method of Green et al. [28] modified by Eas
either the direct mode with u; specified or in the inverse mode
with the mass flux defect Q specnﬁed Here = p,u;6" where
p; is the inviscid density on the airfoil or wake genterline. Both
attached and thin separated turbulent flow can be calculated.
This method is based on the solution of thrge ordinary dif-
ferential equations: the momentum integral equation, entrain-
ment equation, and a lag equation derived frgm the differen-
tial turbulent kinetic energy equation. The @riginal integral
boundary layer equations of Green et al. [28] were extended to
include physical surface transpiration. The E)qtended momen-
tum integral equation is

ad  C, chm
ds 2 . ds T* ”
where m, = (p,v,)/{p.u,)} is the nondimen#ional transpira-

tion mass flux. Here the subscripts e and w depote the edge of
the boundary layer and airfoil surface, respattively, s is the
arclength in the streamwise direction along th¢ airfoil or wake
centerline, 6 is the momentum thickness, u is the speed, C; is
the skin friction coefficient, H is the shape factor, M is the
local Mach number, and p is the density. The ¢quation for the
entrainment coefficient Cp given by Green q al. [28] is ex-
tended [1] to i
6
! igo pudn—~m,,

C =
£ pel, ds

i‘
where Cx = Vi/u,, Ve is the entrainment vglocity (positive
for entrainment), and # is the coordinate nornﬁal to the airfoil
surface. Using the definition

1 (% pu
H = —S dn
0 Jo pou,
results in the modified entrainment equation Ul]

di  dH C, 8 du
= Cerma =B, [, - |} 6
ds dH,{ R IR m"!“?: ds 1S
where H is Head’s shape factor
Ae [ (-

u€ i

In the method of Green et al [28] the skm’ friction coeffi-
cient C; is compuled from a correlation depending on the
value of the flat-plate (zero pressure gradient) skin friction
coefficient Cp coresponding to the moment thickness
Reynolds number Re, of the flow. The value of this flat-plate
skin friction coefficient is modified to account for the effects
of transpiration by using the relation gne | by Kays and
Crawford [30}]

1,(1+B;)
Cﬂ) = Cﬂ)s [T

where Cg, is the flat-plate (zero pressure gra 1em) skin fric-
tion coefficient for a nonporous surfa and B, =
m,./{Cg/2). The value of Cg, is determined by Newton i‘era-
tion. It is assumed that the other empirical corselations used in
the method of Green et al. [28] and modified by East et al. [29]

1.25
] (1+B )°~25w3
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are approximately the same for the case of a transpired
boundary layer.

In the inverse mode the dependent variables are u,, A, and
Cg. The form of the equations is

du, __ A 1 dQ

ds B B ds

dH du

—— =C+D—=

ds ds

dCE du
=E+F —=

ds ds

The expressions for the coefficients are given in Appendix C.
The boundary layer and wake on the upper and lower sides of
the airfoil and wake centerline are computed separately. The
wake centerline is taken to be a cubic polynomial with the four
coefficients determined from the locations and slopes of the
trailing edge and the assumed location of the end of the wake
centerline. The skin friction coefficient is set equal to zero in
the wake. The starting value for 4, is u,. When transition is en-
forced the starting value for Q is determined in either of two
ways. One way is to assume continuity of Q. The other way is
to compute Q by assuming that it has the value that a flat-plate
boundary layer would have at the same distance from the
leading edge. The starting values for H and Cg are found
following the method given by Olling [1]. The correction for
longitudinal surface curvature suggested by Green et al. [29]
was incorporated by Olling [1]. The system of equations is in-
tegrated with a fourth-order Runge-Kutta method [31}. The
streamwise step size is clustered toward the leading and trail-
ing edges and is smaller than that of the inviscid code. The
first derivative of the forcing function is calculated in the
supersonic region by first-order accurate upstream differenc-
ing and in the subsonic region by the second-order accurate
differencing for a nonuniform step size presented as equation
(3.14.3) of Ferziger [31].

Finite-Difference Boundary-Layer Code

The finite-difference compressible boundary layer code
presented by Drela [32] was adapted to the present coupling
approach. This code can compute compressible laminar, tran-
sitional, and turbulent flow that is attached or separated.
Modifications were made by Olling [1] to the calculation of
the inner eddy viscosity for turbulent separated flow. Surface
transpiration effects were incorporated. The intermittency
factor of Abu-Ghannam and Shaw [26] was used in the transi-
tion region. This code is based on a variation of Keller’s box
scheme [33, 34].

The governing equations are the continuity equation, the
linear momentum equation in the streamwise direction, and
the total enthalpy equation. The Cebeci-Smith [34] two-layer
algebraic eddy viscosity formulas are used. These equations
are nondimensionalized, and then transformed variables are
introduced which permit the calculation of flow near the
stagnation point. The coupled system of equations is dis-
cretized on the shifted box grid [32] and Newton iteration is
applied to determine the iterates of the unknown variables.
This procedure leads to a block tridiagonal system of equa-
tions in which the blocks are 3 x 3 matrices. The eddy viscosity
is also linearized during the Newton iteration procedure and
this leads to quadratic convergence of the solution for both
laminar and turbulent flow.

Four different forcing functions can be used. In the direct
mode u; is specified. In the inverse mode &*, Q, or C, can be
specified. It was found by numerical experiments that the
solution would not converge when Q was specified at the
stagnation point.

A modified Reyhner-Flugge-Lotz approximation is applied
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tribution of the convective momentum term to|
iterates (the terms inside the 3 x 3 blocks) butil
contribution to the residues. “
The finite-difference code was chosen over §
tegral boundary-layer code capable of compuli
separated flow for two reasons. A laminar integral boundary-
laver code based on a modified Klineberg-Leesi[35] method
was developed by Olling [1], but it was found that the code
could not be used very near the stagnation poinf because the
integral boundary layer equations possess a singplarity there.
This would render the method inappropriate if aileading edge
separation bubble occurred. Also a 1am11 ar mtegral
boundary-layer code cannot compute the trans 1onal reglon
(unless the approximate procedure of LeBalle r [13] is ap-
plied) and the empirical method of Abu-Ghanngm and Shaw
[26] is inapplicable when the transition region coftains separa-
tion or a shock wave. Thus, for these special u.asps the finite-
difference method is most appropriate. 1
Coupling Boundary Conditions—Total Tﬁansplratlon
Velocity -

The coupling boundary conditions in the inv bc1d code on
the airfoil and wake centerline are a total transpifation veloci-
ty v, normal to the airfoil and jump conditions the velocity
components normal and tangent to the gumed wake
centerline. The total transpiration velocity v, cansists of two
parts: an equivalent transpiration velocity vy due to the
boundary-layer displacement effect and a p ysu:al mass-
weighted transpiration velocity v, due to sucudp or blowing
through the porous airfoil surfaa.e such that |

U, =V, + U,
where

1 4
vy =— Q and v, =
p; ds Pi

Uy

Here p,, and v,, are the density and velocity of ﬁhe physically
transpired fluid, respectively. The sign of v, i§ positive for
blowing (i.e., a source). It is assumed that p, i§ equal to the
adiabatic wall density
(y-1) MZ)
2

where r is the recovery factor, + is the specific heat ratio, and
M is the local Mach number. For laminar flow, r = (Pr)!?
and for fully turbulent flow r = (Pr)!"?, where Pr is the
Prandt] number. For transitional flow, it is assymed that r =
(Pr)“2-7+9) where v,, is the intermittency factdr, 0 < vy, <
1, v, = 0 for laminar flow, and v, = 1 for flly turbulent
flow. The displacement thickness in the definition of Q is

1
Piwliw
The velocity jumps on the wake centerline are [3]

pw=p,/(l+r

[
6= SO (p;u;—pu)dn

(%), (D),
= [1(- —pQ‘:-—(l +1/H,) +K}! ———Q'—(l + 1”‘4)]

and lower sides of the wake centerline, = 3°/ is the shape
factor, and K*® is the curvature of the displaceient thickness
surface

where A indicates a jump, the subscnpts u, ! de'aotc the upper

.__4d8
K'ds

where 8 is the streamline slope {19] on the;‘displacement
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Fig. 1

Computational grid, Sobieczky cascade

thickness surface. A procedure similar to that of Collyer is
used to introduce the jumps in the normal and tangential
velocity components into the reduced potential at the points
on the upper and lower sides of the wake centerline and at the
fictitious points on either side of the wake centerline. The
detailed procedure is shown by Olling [1].

The semi-inverse coupling method can be summarized as
follows:

1 The potential solution is advanced for a certain number
of iterations on up to four increasingly refined grids with v, =
0 on the airfoil surface.

2 The boundary layer code was run in the direct mode with
u specified from step 1 until separation or a specified point
was reached. At that point the boundary layer code was
switched to the inverse mode with an initial guess for Q.

3 Wigton’s or Carter’s formulas for updating the Q values
are applied (see Appendix D). The transpiration velocity and
jumps in the velocity components along the wake centerline
are computed.

4 The potential solution is advanced for one to five itera-
tions on the finest grid being used, with the boundary condi-
tions held constant. During the first nine coupling cycles the
relaxation factor was equal to unity. After that the relaxation
parameter was equal to 1.7-1.8.

5 The boundary layer code was run in the direct mode on
the forward part of the airfoil and in the inverse mode on the
rest of the airfoil and wake centerline with the @ values deter-
mined from step 3.

6 Steps 3-5 are repeated until the error measure (¥,/u; —
1) is less than a specified value or until a maximum number of
interaction cycles has been reached.

Results _ . _. e

Based on the detailed analytic and numerical analysis of OlI-
ing [1], a package of computer programs, GSD28, was
developed [24]. This software performs automatic computa-
tional grid generation, full potential finite area inviscid flow
solution [16], integral and finite difference method solution of
the complete boundary layer with wake, and automatically
iteratively couples the inviscid and the viscous part of the flow
field.

The first example is for a cascade of solid Sobieczky [16]
airfoils, which are not shock-free. The upstream Mach
number is 0.80, the Reynolds number based on the chord is 9.1
x 10°, T, = 288 K, ¢ = 0.076 m, and the freestream tur-
bulence level is 1 percent. The upstream angle of attack with
respect to the horizontal is 40 deg and the stagger angle with
the horizontal is 27.3 deg. The gap-to-chord ratio is 1.0. The
computational wake extends two chord lengths downstream.
Three sets of increasingly refined grids were used. The finest
grid had 48 cells on both the upper and lower sides of the air-
foil, 32 cclls along cach side of the wake and 16 C-layers of
grid cells in the outward direction (Fig. 1). The inviscid code
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Fig. 2 Mach number field, solid Sobieczky ‘i¢ascade
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Fig. 4 Total transpiration velocity, v,/a", solid Sobfeczky cascade

was run for 10 iterations on the first grid, 10 i
second grid, and S iterations on the third

overrelaxation factor for the inviscid code duri:
was 1.697. !

Transition was enforced on the upper side oﬂ the airfoil at 3
percent of the chord and the boundary layer and wake were
computed by the integral method. Natural transition was
allowed on the lower side of the airfoil, and the boundary
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Fig. 6 Skin friction coefficient, Cy, solid Sobieczky cascade

layer was computed by the finite-difference method with the
wake computed by the integral method. Transition started at
x/c = 0.2357 and ended at x/c = 0.5554.

Wigton's update method was used for the first 400 coupling
cycles in the regions computed by the integral method.
Wigton’s method was used because during the initial coupling
cycles with Carter’s update method with a relaxation factor of
0.1, the boundary layer developed oscillations. Carter’s up-
date method, with a relaxation factor of 0.1, was therefore
used for the last 240 coupling cycles. At the same time,
Carter’s update method, with a relaxation factor of 0.1, was
successfully used for the regions computed by the finite-
difference boundary-layer code. The trailing edge treatment
explained by Olling {1] was applied. Mach number field is
presented in Fig. 2. The airfoil surface pressure coefficient
distribution is shown in Fig. 3. The coupled and pure inviscid
solutions exhibit large differences indicating strong viscous-
inviscid interaction. The predicted drag coefficient is Cp =
0.02458 and the lift coefficient is C;, = 0.64293. The predicted
turning angle is 16.92 deg. The total transpiration velocity is
presented in Fig. 4. A large value is noted at the trailing edge
on the upper side of the airfoil. The displacement thickness is
shown in Fig. 5. The skin friction coefficient is shown in Fig.
6. On the upper side of the airfoil, the flow has shock-induced
separation between x/¢ = 0.369 and x/c = 0.496 and
separates again downstream of x/c¢ = 0.683. On the lower side
of the airfoil, laminar separation starts at x/c = 0.163 and
reattachment occurs at x/c = 0.427 as a transitional flow with
the itermittency factor vy, = 0.66. When this example was
computed with a freestream turbulence level of S percent,
natural transition occurred sooner on the lower side of the air-
foil and no separation occurred there.
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The second cascade flow example is for bothfa solid and
porous NACA 65-(12)10 cascade. The pressure cogfficient was
experimentally determined for the solid casca e by Briggs
(38]. The upstream Mach number is 0.81, the Reynolds
number based on the chord is 9.1 x 10°, T, =
0.076 m, and the freestream turbuience level is asshimed to be 5
percent. The upstream angle of attack with refpect to the
horizontal is 45 deg, and the stagger angle re btive to the
horizontal is 28.5 deg. The gap-to-chord ratio is 1j0. The wake
extends two chord lengths downstream. i

In the porous cascade case, a peaked perme
distribution on the upper side of the airfoil was u
=0.10, x, = 0.20, x, = 1.0, and x,, = 0.3586.,

Transition was enforced at 3 percent of the chogd on the up-
per side of the airfoil and natural transition wag allowed on
the lower side. The boundary layer and wake dn both sides
were computed with the integral method. For theflower side of
the solid airfoil, computed transition started at x/c = 0.085
and ended at x/c = 0.244. For the lower side the porous
airfoil, transition started at x/c = 0.0925 and en( ed at x/¢c =
0.262. |

The converged solution Mach number field with a contour
interval of 0.02 is presented in Fig. 7 for the solid fascade case.
The pressure coefficient is shown in Fig. 8. Hor the solid
cascade, the computations agree fairly well with the experi-
ment except at the beginning of the shock. Fok the porous
cascade, the shock strength is weaker. The Cp cutive on the up-
per side begins to differ from that of the solid at the start

bility factor
d with &,
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Fig. 10 Displacement thickness, §*/c, solid and porous NACA
65-12)10 cascades

of the porous region. The computed drag coefficient for the
solid cascade is Cp = 0.03086 and for the porous cascade is
Cp = 0.02755, a reduction of 10.7 percent. The computed lift
coefficient for the solid cascade is C; = 0.74235 and for the
porous cascade is-C; =-0.76023,-an increase of 2.41 percent.
The computed static-pressure rise p,/p, for the solid cascade
1s 1.2546 while the experimental value was 1.244. The value
for the porous case is 1.2622. The computed turning angle for
the solid cascade is 19.0 deg while the experimental value was
20.6 deg. The value for the porous case is 19.97 deg. The
plenum C, for the porous airfoil is —0.453 while C; =
—0.406.

Figure 9 illustrates the equivalent and physical mass-
weighted transpiration velocities, v,/¢* and v./a*, and the
permeability factor ¢ for the porous cascade. Because the
plenum C, is close to C,, physical blowing occurs in the super-
sonic region ahead of the shock and physical suction takes
place behind the shock. The displacement thickness is shown
in Fig. 10. The skin friction coefficient is presented in Fig. 11.
For the solid cascade, shock-induced separation occurs be-
tween x/¢c = (.41 and x/c = (.45, and the flow again
separates at x/c = 0.80. A smooth transition region on the
lower side of the airfoil is computed. For the porous cascade,
physical blowing ahead of the shock leads to decrease of C; to
near separation, but the flow remains attached. Physical suc-
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tion behind the shock causes the C, to increasg. Only a small
region of trailing edge separation occurs. The momentum
thickness, shape factor and mass flux defect .| presented in
Figs. 12, 13, and 14, respectively. ‘

It should be pointed out that all computafions were per-
formed on a medium-size computer, HARRIS 800 II. One
sweep of the inviscid code on a typica! grid ysed during the
coupling required between 5.35 and 5.87 s of {PU time. The
integral boundary-layer code computed the ji tire boundary
laver and wake and coupling boundary conditipn in about 5.4
s of CPU time. The finite-difference boundarytlay
quired an order of magnitude more time, 62.4 § of CPU time,

- 1
to compute the boundary laver on one side of the airfoil only.

Conclusions and Recommendations

On the basis of the results presented, it cal be concluded
that coupled viscous-inviscid calculations 1 of transonic
separated cascade flows, with or without physical transpira-
tion, are feasible with the present method {1, " 41. However,
the semi-inverse coupling method can require § large number
of coupling cycles in difficult cases. Part of the] i
is the slow convergence rate of the SLOR sché
inviscid code on the finest grid being used. Md
viscid algorithms (e.g., alternating-direction
proximate factorization schemes) are availal
remedy that aspect of the problem. But even Wi
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ing the inviscid algorithm, some improvement of the global
convergence could be achieved by simultaneous calculation of
the inviscid and viscous equations in the manner of, for exam-
ple, Wai and Yoshihara [37] but without their viscous ramp
model of shock/boundary-layer interaction. Another advan-
tage of that approach would be the elimination of the necessity
of specifying an initial guess for the mass flux defect when
separation is encountered. Such calculations were made with a
modified version of the GSD28 code {1, 24]. The nonlifting
NACA 0012 airfoil was tested using this approach, and the
results were encouraging.

For separating cascade flow, Wigton’s update formulas are
best for the initial coupling cycles, after which Carter’s update
formula can be used to achieve smoother solutions in the
shock region.

The pressure correction theory of Lock and Firmin {3) is in-
appropriate in the region of strong shock waves. A more
sophisticated approach is needed. Boundary-layer displace-
ment effects can be much larger in cascades than for isolated
airfoils. The shock wave in cascades will often be in a region
of transitional flow unless the freestream turbulence level is
high. The present integral boundary-layer code cannot handle
this situation and transition must be enforced ahead of or at
the shock.

The computations show that passive physical transpiration
can lead to a reduced drag coefficient and increased lift coeffi-
cient for the permeability factor distributions used in the
present work. The shock strength can be diminished and
shock-induced separation can be eliminated. If the porosity is
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shock may cause separation there. Actually, the 4
performance of airfoils also can be decreased if t

“‘shaving-off”’ procedure [16] can make shocked Ri
even stronger shocks. i

Consequently, it would be highly desirable to
entire concept of porous airfoil design as an inv

be found so that it corresponds to a minimal
aerodynamic drag for the particular airfoil and
aerodynamic parameters. i
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APPENDIX A

Laminar Boundary Layer

Rott and Crabtree’s [25] compressible Thwaites method for
laminar boundary layers is modified as shown below.

From Stewartson’s [27] transformation, we have the follow-
ing relationships between incompressible (subscript I) and
compressible quantities

T Tas =02 P g (A1)
ade Po
dny =2 2 an (A2)
de Po
u =22y (A3)
ae
du, P a p. T, du (A4)
ds; a2 p, T, ds
6,=Le S= 4 (AS)
pm al’
w T,
= ‘= A6
o T (A6)

Here, n is the coordinate normal to the airfoil, and the
subscripts oo and O denote upstream infinity and stagnation
conditions, respectively. The value of 6 is computed from
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2 : s Ly 4
o=[0.45 ,o( P ) (.&.) u-GS usc(_“_a.‘_)
P a, 0 a4

172
Pe_ g | | (A7)

Pa

|
where , is the stagnation kinematic viscosity cit)efﬁcient. The
incompressible pressure gradient parameter /;

I_du, 6} 1(0,)‘ p. T, 61 du
]—_——=— ——— ——

a, P T, "0- ds

The incompressible shape parameter H, is co‘pruted from /
using the curve fits to Thwaites’ tabulated values presented by
Cebeci and Bradshaw [33]

(A8)

forl,=0 H; =261+1(-3.75+5.341)
for 1,<0> H,;=0.0731/(0.14+ 1)+ 2.088 (A9)
The skin friction coefficient is computed from
2
¢;=2p( :‘ ) M../(MRe;) (A10)
6
Re;s = “101 (All)
Vi
5r=0,H, (A12)
& ¢ 0
p=_"" ( “1 ) (A13)
uy \ an; /m=0

Klineberg and Lees [35] present P and H; as|functions of a
parameter ‘‘a@’’ for Falkner-Skan velocity pTﬁIes. Using a
polynomial least-squares fit, the following reldtion was deter-
mined for attached flows

a=18.036555z+ 41.546762* — 167.6696z°

+300.770z* + 1546.6052° (Al4)

where z = H, — 0.24711. Then P was deter;rﬂned from the
relation given by Klineberg and Lees {35]. Thejshape factor is
computed from

- 1)

The displacement thickness is 6* = H# and|the mass flux
defectis Q = p,u,b6".

T, T,
H=H +P “2< AlS
11 T T ( )

€ e

APPENDIX B

Transition Region

The empirical method of Abu-Ghannam anfl Shaw [26] for
calculating transitional boundary layers is mogified for com-
pressibility as shown below. By using Stg¢wartson’s [27]
transformation, the following relations betwegn incompressi-
ble (subscript I) and compressible quantities afe found (in ad-
dition to equations (Al), (A3-A6))

6u, P, ( a, )2 Ou .
R, = - Bl
o 4] Pun a, L9} ( )
, = 6t duy 1 as )‘ P, T __9"_ du (B2)
"Wy, ds, C\ a, P, T, v ds

where the subscript o« denotes upstream infinify. The value of
v, is calculated by finding u, and from this fletermining the
isentropic temperature and density

_ v—1/ y )2)
A
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2 ag
and then using Sutherland’s equation
vi=ui/pp=[1.458 x 10-8T} 3 /(T + 110.4)}/p, (BS)

The quantities p,, T,, a, are the stagnation pressure,
temperature, and speed of sound, respectively. The incom-
pressible arc length is found by integrating equation (A1l).

The start of transition (subscript S) is determined from the
relation

(Ry)1 =2 (Ry)s (B6)

where (Ry);s is defined by equations (11)-(13) of Abu-
Ghannam and Shaw [26].

The end of transition (subscript E) is determmed from
finding when

SpZSE (B7)
where
Sig = Ruevis/Uss (B8)
Ryig = Rygs + 16.8(R5)%° (B9)
Ryis = Sisttis/vis (B10)

The momentum thickness at the end of transition depends on
the value of

C,=B*-4AC (BL1)
where
A=183.5 c1(1.4)(ﬂ) . (B12)
ds; /E

B=u/vg (B13)
C= —540-183.5C, (B14)
C,=R,;1075-1.5 (B135)
Ry =(sig —sis)uys/vig (B16)

If C, > 0, then
9 =1-B+ (C)'"?)/(24) (B17)

If C; < 0, then
81e =0.0368(R%2)/B (B18)

The value of 8¢ is found from equation (AS5). This value is
used to compute Hg and Cg according to the second method
suggested in section A4 of Green et al. [28].

The values of 8, H, and C in the transition region are found
using equations (24), (26), and (32) of Abu-Ghannam and
Shaw [26].

APPENDIX C

Turbulent Boundary Layer

The coefficients used in the integral turbulent boundary
layer equations are presented below

A = _peueFl

c
F, =H(Tf . mw) +(1 +0.2rM2)[CE +m,

- (Frm) |
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B =[(1-M»Q+p,u,F,0l/u,

Fy = —H(H+2-M*+(1+0.2 r"M3)(H+ 1)H,

+0.4rM2(1+0.2M3)(H + 1)

C =it (SLem.)]

df
D =L HH+),
g, D/,

E = F{z.suc,)ggo =MCHVV/H+H))

8 du, }
+{— —= /8
< u, ds ) £Q

F = —F1+0.073M%(1 + 0.2M)/(1 +0.IM3)]/ 1
where

F =(0.02C; +~CL+0.8 Cr,73)/(0.01 + Cg)
C, =7/(p,u?) S

7 is the maximum shear stress, r is the recovery| factor, the
subscripts EQ and 0 denote equilibrium flow agd flat-plate
flow, respectively, and X is a scaling factor for effects due o
longitudinal streamline curvature and flow co vergence or
divergence. ;

The following changes are made to equilibriun} quantities:

(CE)EQO—Hl[g—+m —(H+1)(  du, )EQO]‘”’w

u, ds
(&) =[5
APPENDIX D

Wigton’s [14] formulas for updating the Q valjes between
each interaction cycle are as follows:

m, —[(Celeq + m,,]/H,} (H+1)

for M < 1:

«1 _ ("IBDABul u, _
Q" _Q"+-—u3—6’p, ( " 1)
for M > [

g @B [prdu.  du
O = B B [B(ds %)

. u
_Bp,( d )]
U;
where M is the local Mach number, » = x/As, is the step
size, = 11 — M21V2 B s the coefficient in thelmomentum
integral equation written in the form
d du
Q =4A+B—=
ds ds
and w, and w, are relaxation factors (equal fo unity in
Wigton’s analysis).
Carter’s [12] update formula is

J]

Q"*':Q"[H—w[ L

i

where w is a relaxation factor.
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