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tABSTRACT

i A new algorithm for the acceleration of
iterative schemes for the numerical solution of
systems of partial differential equations has been
developed. The method is based on the idea of
allowing each partial differential equation in the
system to approach the converged solution at its
own optimal speed. The DMR (Distributed
Minimal Residual) method allows a separate
sequence of optimal weighting factors to be used

. for each equation in the system. The acceleration
scheme was applied to the system of time-dependent

Euler equations of inviscid gasdynamics in

"conjunction with the finite volume Rational

Runge-Kutta (RRK) explicit time-stepping algorithm.

‘Using DMR without multigridding, between 30% and

1 70% of the total computational efforts were saved
1in the subsonic compressible flow calculations.
iDMR method in its present version seems to be
fespecially suitable for stiff systems of
;equations. It required less than double amount of
; storage of the original non-accelerated algorithm.

INTRODUCTION

One of the successful, explicit methods used
to solve Euler and Navier-Stokes equations
governing compressible flows subject to the
various flow conditions is the Rational
Runge-Kutta (RRK) time-stepping algorithm [1,2].
It is based on the finite volume technique with
2nd-4th order blended non-physical (artificial)
dissipation [1]. Several attempts have been made
to accelerate the iterative convergence of this
method. They include local time stepping [1],
implicit residual smoothing [1], enthalpy damping
[1] and multigrid techniques [3]. Also, an
extrapolation procedure based on the power method
and the Minimal Residual Method (MRM) were applied

f3] to the finite volume Runge-Kutta method
together with multigridding. In the MRM [3], a
weighted combination of the corrections at
consecutive iteration levels is extrapolated and
‘the weights are chosen to minimize the Lp norm of
'the future residual. The extrapolation was
‘performed without considering the specific
‘properties of the governing equations. The GNLMR
(Generalized Non-Linear Minimal Residual) method
[4,5,6,7) utilizes the information from the
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governing equations. It has been applied
successfully to a number of scalar linear and
nonlinear partial differential equations.

Both MRM and GNLMR method use the same values
of optimal weights for the corrections to every
equation in a system. Nevertheless, since each
component of the solution vector in a system of
equations has its own convergence speed, the
sequence of optimal weights could be allowed to
vary from equation to equation. The authors
believe that this concept underlying the
Distributed Minimal Residual (DMR) method is
similar to the general idea behind the
preconditioning techniques. With the
preconditioning, the eigenvalues of the system are
changed so that the different CFL (Courant-
Friedrichs~Levy) number can be used for each
characteristic variable. This paper presents the
theory constituting the DMR method and

-demonstrates the advantages of the new algorithm

with a number of computational examples.
Applications of the DMR to the system of Euler
equations of inviscid gasdynamics are presented.
The formulation can be equally well applied to
other systems of differential equations and to
other types of numerical integration algorithms.

TIME-DEPENDENT EULER EQUATIONS OF INVISCID
GASDYNAMICS

The system of time-dependent Euler equations of
gasdynamics in two-dimensional space can be
written in a general conservative form as
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where the global solution vectors combining mass,

x-momentum, y-momentum and energy conservation
equations are defined as
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Here, p, u, v, p, €5 are the density, x and y
components of the velocity vector, thermodynamic
pressure, and mass-specific total energy,
respectively. 1In addition, U, V, £, n and D are
the contravariant velocity vector components,
non-orthogonal curvilinear computational
coordinates, and determinant of the Jacoblian
transformation 3(£,n)/3(x,y), respectively.

The contravariant components U and V of the

.velocity vector in the body~conforming (£,n)
.coordinate system are given by

;U =g ut Eyv (3)

Vo= nx u + nyv (4)
"The total energy per unit mass for a calorically
‘perfect gas is
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iwhere cy is the specific heat at constant volume
}and T is the absolute temperature. The
‘determinant of the Jacoblan geometric
{transformation matrix is
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FINITE VOLUME RUNGE-KUTTA TIME~STEPPING ALGORITHM

In the finite volume method [1], the
: governing equations are integrated over each
. computational cell in the (&,n) computational
fplane. With the help of the divergence theorem,
‘the surface integral is transformed into a sum of
‘line integrals. These integrals are discretized
~with the assumption that the fluxes are constant
along the cell faces. Each quantity at the cell
face 1s evaluated as the average of the values at
the neighboring cell centers (cell centered
scheme).

The cell centered finite volume method is
identical to the central difference scheme on a
uniform grid. It is known that the central
difference scheme produces odd-even decoupling.
To suppress this tendency,the artificial
dissipation terms are added to the discretized
equation {1]. The mixture of 2nd and 4th order
artificial dissipation t¢-~ms [1] was used.
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where d is the artificial dissipation operator and
Q is the vector defined in Egq. 2. The two terms
on the right hand side of Eq. 7 are contributions

from the two computational directions. They can
be written [1] as:
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_large amounts of artifictal dissipation.

Tne terms on the right hand sides of £gq. 8 are
similar [1]. For example,
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where the second and fourth order coefficients
multiplying the flux derivative terms are flow
adaptive coefficients. The scaling with the area
D and the local time step, At, is included [8] to
correspond to the formulation of the Euler
equations in the transformed plane. A pressure
sensor is introduced to locate regions requiring

It is
based on the second derivative of pressure [1,9]
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The flow adaptive coefficients are then calculated
[1] as:
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The system of time-dependent Euler equations
is known to be of hyperbolic type anc¢ the boundary
conditions should be applied according to the
direction of the characteristies. At the inflow
and outflow boundaries, the incoming Riemann

. invariant is specified and the outgoing Riemann

invariant is extrapolated from the interior points.
Also, the entropy and the tangential velocity are
prescribed at the inflow. At the outflow, these
quantities are extrapolated from the interior of
the domain.
At the solid wall, the normal momentum eguation is
used to evaluate the wall pressure. The
contravariant velocity component U at the ghost
cells inside the solid body is extrapolated, while
the contravariant velocity component V is
reflected from the wall.

An explicit Runge-Kutta time-stepping [2,1]
scheme is used to evolve the solution in time.
The 4th order Runge-Kutta scheme is given by
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where N is the discretization operator of the
finite volume method. The artificial dissipation
is evaluated at the beginning of each Runge-Kutta
global step and 1t was not updated during the
intermediate steps. Linear stability analysis
indicates that the explicit Runge-Kutta scheme is
stable if CFL § 2.8. If the grid spacing in (§,n)
plane is uniform Af = &n = 1, then the time step
is given [9] by
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i where a is the local speed of sound and the

| combined time step [9] is
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i DISTRIBUTED MINIMAL RESIDUAL METHOD (DMR)

:Lfggeél residual of the finite volume method at
time level t can be expressed as

Pt - JJ 2

where S is the surface of the single grid cell and
. components Q, E and F of the generalized solution

ivector are defined in Eq. 2.
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We plan to use corrections from M consecutive time
levels to update the value of Q to (t+1) global

{ time level. Thus,
|
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and Az are the corrections and w? are the weights

for each of the &=1..,.,L equations in the system
(Eq. 2) at each of the m=1,..., M consecutive
global time levels. Therefore, upon substituting
Eq. 22 in Eq. 21, the new local residual for the
single cell will be
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Using a Taylor series expansion truncated after
the first term results in
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Define the global residual Rt as a sum of the
squares of the local residuals, that is,

hHt h @1

e

(a4

L}
Lol anee N on |
S

where I and J define the grid slze and the
superscript * designates the transpose of an array.
Then, the global residual at the next global time

level will be

1J M
RS S I % Go o
i3 n
M ([ .
3 8 n * t_ 3 E m
+a—n(-a—Q-Q)] dS} {1" r):nJJ [35 (BQQ )
. 8 oF m
3= (55 9] as} (28)

To minimize RY*1, it is necessary to use the

values of w: that satisfy
LI (29)

for all m and &. Thus, from Eq. 29 and Eq. 28 it

follows that
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where is the Kronecker delta.
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Notice that
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Note that A? is not a function of w's. Then, Eq.
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resulting in a system of LxM equations for the LxM

unknown optimal acceleration factors w?. In the
case of two-dimensional Euler equations, L = 4.
Thus, we must solve simultaneously the following

system of U4xM equations in order to determine the

4xM optimal values of w?.
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We have decided to combine four consecutive
time steps (M=4). Since the twodimensional Euler
equations form a system that has four equations (L
= 4), these four sequences of four optimal values
of w can then be used in Eq. 23 and Eq. 22 to
update the solution to the next global time level
t+1.

The matrices 8E/3Q and 8F/3Q that are needed for
evaluation of the coefficients in the above matrix
are given as:



p— 0 gx
I%l Ex(u2+v2) - ul (2-Y)€xu+U
9E Yol b (4 2ay?y - (1
o " 5= 6, (uTv) - v g v-(y 1)CYU
2.2
[CY=1)(u"+v7) = Yelu hEx-(Y-1)uU
0 —
EY
Eyu-(Y—1)Exv (Y-1)Ex
42)
(2-Y)Eyv+U (Y—1)Ey
hEy-(Y-1)vU YU
-
— o nx
l%l nx(u2+V2) - uV (2-Y)nxu+V
3F -1 2, 2 v
30" - ny(u +vS) - v v (Y 1)nyu
2.2
[CY=-1)(u"+v®) = YelV hnx-(Y-1)uV
0
T]y )
nyu-(Y-1)nxv (Y-1)nx
(43)
2-Y +V Y-1
( )nyv ( )ny
hn -(Y=-1)vV YV
Y

where h is the specific enthalpy per unit mass and
Y in the ratio of specific heats for a calorically
. perfect gas.

: In addition to the computer memory required
‘by the original non-accelerated * scheme [1],
additional memory is needed to implement the DMR.
If the grid points are IxJ and we use M global
consecutive time levels to update the solution,
then for the two-dimensional problem the extra
memory requirement is approximately L x (2+M) x
(I-2) x (J-2) and for the three-dimensional Euler
equations the extra memory requirement is
approximately L x (3+M) x (I-2) x (J-2) x (K-2).
In the two-dimensional case this represents
approximately 150% increase and in the
three-dimensional case this represents
approximately 175% increase in memory requirement
over the original non-accelerated [1) algorithm.

Three different methods were tested fior the
boundary conditions on the residuals in the
integrals of Eq. 35. .The first method was to set
the residuals at the ghost cells to be zero. The
second method calculates the residuals at the
ghost cells from the boundary conditions. The
third method extrapolates the residuals from the
interior of the flowfield. It was found that the
third method gives the best results.

RESULTS

All computations were performed on a VAX
11/8550 computer in a single precision mode. The
first sequence of tests of DMR was performed on
the internal two-dimensional (L=4) flow problems
by combining four consecutive global time steps
(M=4). This means that a 16x16 matrix (Eg. 41)
needs to be inverted. Figure 1 shows the
computational grid for a 10§ thick circular bump
in a two dimensional channel. The grid size is
65x17 points. The calculations were started with
uniform flow and the DMR was applied once after
every 30 iterations. Figure 1 shows the
convergence histories of subsonic flow
calculations with Me= 0.5. The number of
tterations needed to achieve the same level of
residual 1s reduced almost by 60%. The
convergence with the DMR shows smaller
oscillations than that of the original [1] scheme.
It is expected that this behavior continues to the
machine accuracy. The saving in computational
time is about 50% for this test case.

The constant pressure contour plots of the
entire flow field for both non-accelerated finite
volume RRK scheme and DMR accelerated finite
volume RRK scheme are shown in Fig. 4 and Fig. 5,
respectively. The difference between the two is
not discernable in these contour plots thus
confirming that DMR method does not adversely
influence the quality of the solution.

Results of the second test case are presented
in Figs. 6,7,8 and 9. The entire flow field is
subsonic with Mg = 0.55. For this test case, the
saving was almost 40% in CPU time. It is
noticeable that the convergence history shows more
oscillatory behavior than for the case with M =
0.5. Another subsonic (Mg = 0.6) test case was
tested and the results are shown in Figs. 10, 11,
12 and 13 demonstrating that a considerable amount
of computation effort was saved. ’

Figs. 14 and 15 show the convergence
histories for the transonic shocked flow case with
Mao= 0.675 which is less than the flow choking
Mach number of this channel. Results indicate
that with the DMR, the convergence rate is not
improved.

Similar trends were observed when solving
Euler equations for a flow around a circle. An
O-type grid consisting of 64x32 grid cells was
used. For a moderately compressible subsonic flow
(Moo= 0.3), DMR saves (Figs. 18 and 19)
approximately U5% of CPU time. It generates
results (Fig. 20) that are practically
indistinguishable from the non-accelerated scheme.
When the critical free stream Mach number Mo = 0.4
was used, Fig. 21 indicates and Fig. 22 confirms
that the DMR method in its present form offers
practically no gain when compared with the
non-accelerated algorithm although the computed
surface Mach numbers (Fig. 23) are equally
accurate. Thus, both Ni's bump case and circle
case indicate that DMR method in its present
formulation offers no advantages at transonic
speeds. On the other hand, the system of Euler
equations becomes stiff as the Mach number
decreases, thus rapidly reducing the convergence
rate of the non-accelerated scheme. When using Ve
= 0.1 (an almost incompressible flow), Figs. 24
and 25 demonstrate that DMR offers over T0%
savings in the CPU time over the non-accelerated
scheme. Fig. 26 indicates difference in the
computed surface Cp values after 1200 iterations.



In order to account for the different local
characteristic behavior of the transonic flow, {t
should be possible to use different sets of
welghts for different regions of the flowfield.
Also, the artificial dissipation terms could be
incorporatec¢ in the formulation of the DMR. In
addition, the optimal frequency of applying the

DMR needs to be investigated. 1In the present
investigations, DMR was applied by combining four
consecutive time steps after every thirty time
steps.

Notice that all numerical results were
obtalned without the standard acceleration
technigues such as explicit and implicit residual
smoothing, enthalpy damping, multigridding and
vectorization. These methods could be added to
further accelerate the algorithm.

CONCLUSIONS

k conceptually new method termed Distributed
Minimal Residual (DMR) has been developed and
successfully applied to the acceleration of an
explicit finite volume iterative algorithm for the
numerical solution of a nonlinear system of Euler
equations governing inviscid gasdynamics. The

.main idea of using a separate sequence of optimal
acceleration factors for each of the equations in
the system was theoretically formulated a

numerically demonstrated with a number of examples.

This means that the partial differential equations
governing mass, x-momentum, y-momentum and energy
conservation were accelerated according to their
own separate optimal sequences of acceleration
factors that have a common objective of minimizing
the global residual of the entire system at each
global time level., The method seems to offer
significant time savings especially for stiff
systems of differential equations.
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Computational gricd for a 10% thick
circular arc airfoil on the bottom wall
of & straight two-dimensional channel

(Ni's bump).

Figure 1.
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Figure 20. Surface Mach numbers for non-
accelerated and DMR accelerated
algorithm for circle with Mg = 0.3.
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Figure 22. Comparison of convergence rates in
terms of the CPU time: non-
accelerated and DMR accelerated
algorithm for circle with Mg= 0.4,
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Figure 21. Comparison of convergence rates in
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Figure 23. Surface Mach numbers for non-

accelerated and DMR accelerated
algorithm for circle with Mg= 0.4,
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Figure 24. Comparison of convergence rates in Figure 25. Comparison of convergence rates in

terms of iteration numbers: non- terms of the CPU time: non-

accelerated and DMR accelerated accelerated and DMR accelerated

algorithm for circle with Mg= 0.1, algorithm for circle with Meg= 0.1.
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Figure 26.

Comparison of surface pressure
coefficients: non-accelerated

( } and DMR (—e—e—e——)
accelerated algorithm for circle
with Meg= 0.1.
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