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The boundary conditions can play a
ABSTRACT :
significant roie in the generatlion of numerical
dissipation. A discussion of soiid wall and

A comparative study for the solution of the -
' y far-fieid boundary conditions is included.

Euler equations has been performed using four
Fiux-Vector-Spiitting (FVS) schemes and a central
difference scheme with “wo different dissipation
models. All schemes were tested for the case of
steady, inviscid, transonic airfoll fiow. Van
Leer's FVS scheme was found to be robust and
appears to generate l1ittie numerical dissipation.
The FVS schemes of Deese and Steger-Warming yield
results similar to Van Leer's, though not quite
as robust. Whitfield's FVS scheme generates
large amounts of numerical dissipation and causes where

delayed post-shock pressure recovery. A new,

Physically Based Dissipation (PBD) modei for

central difference schemes has been compared to p pu A4
Jameson's Artificlal Dissipation (AD) model.

GOVERNING SYSTEM OF EQUATIONS

The two-dimensional Euler equations of
inviscid gasdynamics in conservative form and
Cartesian coordinates (x,y) can be written as:

§9+_B_E+£=O (1)
ot

X 3y

pu pu_ *+ p puv
INTRODUCTION Q = pv E = puv F = ov2 + D
e puh

Central difference numerical schemes and ° ° ° DUhO
various forms of Fiux-Vector-Spiitting (FVS) (2)
schemes have received considerablie attention
during the last decade. Upwind (FVS) schemes are with p, p, u, v, €5, hg as the density,
believed to be more robust than central thermodynamic pressure, x-component of velocity,
difference schemes. In particular, they are y-component of velocity, total mass-specific
capablie of computing stronger shocks and high energy and total mass-specific enthalpy,
gradient regions where central difference schemes respectively. The equation of state for a
experience difficulties. Although upwind schemes calorically perfect gas is:
do not require the explicit addition of
dissipation terms, they still may generate
significant amounts of dissipation. In addition, 1 (ou)z (ov)2
most FVS schemes require large amounts of p=(y-1 {oeo ) ('“;"‘ * '";“)} (3
computer time.

In the first part of this study the where Y is the specific heat ratio. The total
two-dimensional Euler equations of gas dynamics mass-specific enthalpy hg is:
are presented in Cartesian and transformed
coordinates. In the second part of this study 3 > >
the FVS schemes of following five authors are h =e + Do+ = (u® + v7) + 24 (4)
investigated: Deese [1,2], Whitfieid [3], Steger ° o f 2 p

and Warming [4], and Van Leer et al [5]. After
describing the methods, a discussion of the
numerical dissipation associated with the FVS

where e is the mass-specific internal energy.
In non-conservative form, the Euler equations

schemes is presented. are:
Next, the finite volume rational Runge-Kutta
central difference scheme of Jameson et al [6] is 3, A 3Q ., B Q 0 )
presented including a discussion of the existing 3t 39X oy
Artificial Dissipation (AD) model [6]. In an
effort to accurately model the physics of the where
fiow, a Physically Based Dissipation (PBD) model
was developed and compared to the AD model.
A= & B -2 (6)
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W, = A, = U X =u - a {(7)

= Yy + A
17 e 3-ure 5

where the speed of sound, a is glven by:

(8)
Similariy, the eigenvalues of the matrix B are:

o, = 0, =V o3 = v +a g, =v-a (9)

For the analysis of arbitrary geometries, the
formuiations can be generallzed by using

body-fitted coordinates. Using the
transformations:
£ = £(x,y) n = nix,y) 1=t (10)

the body-fitted coordinates in the physical
domain become Cartesian coordinates in the
computational domain. In the transformed
(computational) domain, the two-dimensional Euler
equations in conservative form can be written as:

3Q oE oF
3t "o Tan ° (1)
where
Q=20QD E = E - Fx FerF -
Y, Xg EyE (12)
39X
D = - - ==
XSyn ynyE XE € ete.

In this formulation, the prime variabies are
defined at the cell centers, while the fluxes are
defined at the cell boundaries. The fluxes may
also be written as:

pUD pVD
_ pUDu + py - pVDu - py
E= F = 13
pUDV - px pVDv + pxE
pUDh pVDh
[o] <]

(13)
where
U= (uy_ - vx_)/D
n n

V = (-
( uye + uxE)/D (14)

are the contravariant velocity components normal
to the gridiines. The non-conservative

formulation of the transformed equations is:
oQ +8Q , =z3Q
Dog " hyg T B = O %)
where
B £2 oy - 5.8 .
3 Yo Bx B 3G AyE + BXE (16)

Here, A and B are the Jacobian matrices written
in Cartesian coordinates. The eigenvalues of the

[}

matrix A in the transformed pilane are:

Ai = AZ = U A3 = U+ a6 Au =U - aE a7
where

‘ 2 2
ag = a |V | = a (xn + yn)/D (18)
The eigenvaiues of the matrix B are:
pe = 5 = 7 ° = 5 = -
01 02 V 03 Vo + an UN A an (19)
where

(20)

a =a IVn ]- a V(xz + yi)/D

FLUX-VECTOR-SPLITTING

The basic concept behind Fiux-Vector-
Spilitting [3) i{s to use the information from
eigenvalue analysis to determine the direction
from which information is extrapolated in an
upwind scheme. This allows the deveiopment of
valid soiutions in both subsonic and supersonic
regions without violating the consistency or
stability of the numerical scheme. Flux-vector-
spiitting in two dimensions is achieved by
splitting the spatial components separately, as
if they represent two one-dimensional problems.

DEESE AND WHITFIELD SPLITTING

In the methods deveioped by Deese and
Wnitfieid [1,2,3], the fiux vectors in Eq. 13 are
split into parts corresponding to the individual
eigenvalues. Each part is calculiated separately
according to the sign of the corresponding
eigenvaiue. For example, the E fiux in the
transformed domain can be expressed as:

2
= - Y - u +v *
E, = %, —3 (psou,pv,p(—5—)] (21)
by y uy_-vx_
- n
E, = 2—? (p,pu + pat, pv-paz—, h *pa )
n n n (22)
X y x uy _-vx_ 4
- n
Ey = 5% (p,pu - oagﬂ, pv + pagﬁ, n-ea )
n n (23

where the superscript * denotes the transpose of

a vector and

(24)

Similar reiations can be defined for the F fiux.
When the fiow variables in Eq. 21-24 are defined
at ceil centers, the fiuxes must be evaluated at
the ceil boundaries. To evaluate the fiuxes, a
knowledge of the eigenvalues at the cell
boundaries is required.

The method suggested by Deese [1,2] begins
by calculating eigenvaiues at the cell centers.
The values of the flow variables used in the E



fiux calculations at ceil face (i+1/2,3) are then
getermined using the eigenvalues at points (i,j)
and (i+1,j). Thus, when

(). 20 (33); <o
H (25) J (26)
=n =N
(‘2)1+1j 2 0 (A2)1+1j <0
use backward use forward
extrapolation extrapoiation
and when
N T
sign (Al)ij « slgn (A1)1+1J
average forward/backward exptrapoiation (27)

where £ = 1,3. Similar extrapolations are used
for the F fiux calculations.

The method suggested by Whitfield [3] begins
by averaging the fiow variables at adjacent cell
centers to the cell boundaries. This allows the
eigenvalues to be calculated directiy at cell
voundaries, resulting in less complication than
Deese's method. For the E flux calculation at
cell face (i+1/23):

on

(3 i1/ 2 0 (28)
use backward
extrapolation

Tn
(x2)1+1/2j <0 (29)

use forward
extrapolation

Similar extrapolations are used for F flux
calculations.

STEGER-WARMING FLUX-VECTOR SPLITTING

In the Steger-Warming Fiux-Vector-Spiitting
method [4], the Euler equations are cast into a
siightly different form. First, the eigenvalues
are decomposed into non-negative and non-positive
components:

o= o+ X .= 0, + 0 (30)

ol )2 )

i

Splitting of the eigenvalue allows the E flux
vector to be written as:

- -

E=s "+ s;1 3= +a)d=E +F

t
(o]
o
(o]

(33)

o
o O >
o > O
> O O

0 4

and SE and 5;1 are matrices which diagonalize the

A matrix. Similarly for the F vector:

- -

F=F +F (34)

Tne fiux vectors car. ther be expreszel in terms
of the eigenvaiues of their Jacobian matrices.
Thus, in the transformed domain:

., s s s
E, = 55 (2(v = 1) hy + g k) (35)

E, = 5% {2¢y - DAy, U+ an)+A3[an*yn(U+a£))

+iu[XHV+yn(u-aE))} (36)

= b -3 _ T -
Es = 33 2ty DAy, v xnU)+A3(ynV xn(U+a£))

+Xu(ynv-xn(U—aE))} (371)
- o = 2 2 X3 2,y2
B, = & {0 - DF 0%« ve e 52 (e )57
iu 2.2
o H(v-a 2] (38)
where

= =2
(3 - N+ Xeg
2(y = 1)

R = (39)

and

U= (uy - VX )/s = velocity normal to constant
n n n N
£ lines

v = {vx_ - uyn)/s = velocity tangent to constant
n g 1ines

The forward and backward fluxes are then
formed by substituting:

- - o~
Ai= Xi’ xi (40)
into Eq. 35-39. Again, similar equations are
defined for the F fiux. The fiow variablies are
extrapolated from ceil centers to cell boundaries
for the flux caiculations. This is known as the
MUSCL (Monotone Upstream-Centered Scheme for
Conservation Laws) approach. An alternate
approach is to calculate the fiuxes at the cell
centers, then extrapolate the fiux values to the
cell boundaries. This second approach has been
shown to create osciliations in flow solutions
(43, Therefore, the second approach is not
considered in this study. One drawback to
Steger-Warming Fiux-Vector-Splitting method is
that the filuxes are not continuousliy
differentiable when eigenvaiues change sign, as
is the case at sonic points [4].

VAN LEEPR ET AL FLUX-VECTOR-SPLITTING

In an effort to split the fluxes so that the
forward and backward fluxes transition smoothly
when eigenvalues change sign, Van Leer et al [5]
developed another form of split fiuxes. As with
Steger's form, Van Leer's splitting methcd
decomposes eigenvalues into non-negative and
non-positive parts. The formulas for the E flux
are:



£5 = 1 —é— (U = &) (1)
1 we £
B s (Uza Y2 {x v+ y [(x - DU £ 2a )/Y}
2 = ka - g n n £
& (u2)

h$4 P 2 . _
By - ¢ EEE (V£ a) {ynV xn((Y U % ZaE)/Y}
=% [ 2 _ 2
E, = ¢ EEE (v = ap) {(y - VU = 2aE)

20 - 1)) (43)

where U and V are defined as for Eq. 35-3B and

g" = E, E =0 for L 21

-

£ =0, E =EforM <-1

The splitting for F is obtained similarly. As
before, the flow variables are extrapolated from
cell centers to cell boundaries where the fluxes

are calculated (MUSCL approach).

NUMERICAL DISSIPATION AND FLUX-VECTOR-SPLITTING

While upwind (flux-vector-splitting) schemes
require no explicitly added dissipation, it would
be misleading to state that they do not generate
numerical dissipation. For example, consider a
scalar equation solved with first order backward
differences:

YT =

Ju
X (5)p0 * O€2x) (4
where FO refers to a first order accurate
difference.. Equation (44) can be expanded in
Taylior series as [Ollows:

Yp T Uy Yges T Yger ax Yae

A% 28x 2

T 2uy Uy

2
(ax) (15)
The last two terms of the right hand side of Eq.
45 can be viewed as second order accurate
differences for the first and second derivatives.
Thus, one can consider the first order difference
operator in Eq. 44 as the second order
representation:

“ ey e (2
9x’S0 2 axz S0

where SO refers to a second order accurate
expression. This shows the first order backward
difference operator in Eq. 44 to be equivalent to
a second order accurate central difference pius a
second order viscous-iike term in which the
numerical viscosity is proportioral to the grid
spacing. A similar type of anaiysis has been
used to show that second order upwind differences
used to soive Egns. (2) can be rewritten as a
second order centrali difference plus &
fourth-difference viscous-like term [73.

Yy

— « 0(ax)2 (u6)

CENTRAL DIFFERENCE SCHEMES
The conservative form of the Euler equations
(igs. 2 and 13) can also be soived using central

¢ifference methods, such as Jame: on's finite
volume version (0] of the rationa. Runge-Kuita
time-stepping scneme [8]. In centrai cifference
schemes, flow variables are calcuiated at cell
boundaries by averaging vaiues from adjacent cell
centers.

ARTIFICIAL DISSIPATION MODEL (AD)

For central difference schemes requiring
explicitly added dissipation, the calculation of
all the artificial dissipation terms i{s performed
according to [6]:

aQ = ¢ .Q+ an (u7)

13
where @ is the dissipation operator and Q is the
vector defined in Eq. 2. The two terms on the

right hand side of Eg. 47 are contributions from

the two computational directions. They can be

written as:

Q= dy 105 ~ Yimrszs P %Y T Yigerze T diy-172
(48)

The terms on the right hand sides of Eq. 48 are
similar [6]:

Diet/23 (@ (q

d441/25” At 1+1/2]

Q,,)

1413 0 "1
(4)

“€141 /23 (Q,5573 15739y I

“Qi-1y

where the second and fourth order coefficients
multiplying the flux derivative terms are flow
adaptive coefficients. The scaling with the area
D and local time step, 4t, are included to
correspond to the formulation of the Euler
equations in the transformed plane. A pressure
sensor is introduced to locate regions requiring
large amounts of artifiecial viscosity [6]3:

| Pyagg = 2Py * Pyyyl o
vij "3 Y (50)
i+13 i3 i-1)
The fiow adaptive coefficlents are then
calcuiated [6] as:

(2) (2)
e oy = % max (v viy)

°§53/2j = max (0.(k(u)-s§fz/zj))
where k(z) = 1/4 and k(u) = 1/256 (51)
PHYSICALLY BASED DISSIPATION (PBD) MODEL

Instead of using an intuitive non-physical
formuiation for explicitly added dissipation
terms, it is suggested that the dissipation be
based on actual physical dissipation [9,10,11].
Thus, in order to solve the Euler equations one
should actually solve the complete Navier-Stokes
equations of viscous and heat conducting flow
subject to perfect slip boundary conditions and
utilizing spatially varying coefficients of
viscosity. The PBD model represents a physically
consistent formulation since ths Euler equations
represent a limiting case of the Navier-Stokes
equations as the Reynolds number approaches
infinity.



The Navier-Stokes eguations of viscous,
iaminar motion aliowing for n=at conduction
(assuming Fourier's law), expressed in
non-dimensional form and transformed coordinates
can be summarized as:

v v
(- . &)

13 an

%]
£

|2

E L F

t 3 3 %"
g n e

(52)

Q>

where R, is the Reynolds number and the right
hand side fluxes incorporate physically
dissipative terms due to shear viscosity, u,
secondary viscosity, A, and heat conductivity, k.
The generalized viscous fliux vectors are glven
by:

v
eV = (0, (yn'rxx xn'rxy)/D,(yn'rxy - anyy)
/D, (y. 8 y/p)*
Wy By any D (53)
FY o= (0, (x,1.. - y.1..0/D,(x, 1.~ y.1..)
£ xy £ xx 7" e yy £ xy
*
/D, -
D (xsey ygex)/n) (54)

where the shear stress terms:

Teg WUy ¥ Avy=(u(ugyn - unyg) + A(van - vExn))/D
(55)

Tyy™ WYy + Aux=(u(vnxE - VExn) + X(ugyn - unyE))/D
(56)

rxy-u(uy+vx)=(u(v5yn - vnyE + uan - uExn))/D

(57)

and the energy equation parameters are

g = —_— -
x = UTyy + VTxy + o 1)M2 : (TEyn Tnyg)/D
® ' p (58)
g =ur_ +vr +——>>=" (T x_ -T_x_)/D
y Xy ooy - 1)Mz P, nE £°n
(59)

Here, M_is the free-stream Mach number, Pr is the

Prandtl number and T is the absolute temperature.
In addition, the longitudinai viscosity
coefficient is defined as:

o= 20+ A (60)

Rankine-Hugoniot shock jump conditions (adiabatic
shocks) are guaranteed oniy [10] if Stokes
hypothesis:

2
A= 3¢ (61)

is enforced for diatomic gases. This reiation
was used in actual computations.

In devising a PBD model, the coefficient of
viscosity must be allowed to vary throughout the
fiowfield. The existing dissipation sensor is
based on the second derivative [6] of the
pressure (Eg. 50).

We have decided to use the dissipation sensor
that is based on the first derivative of pressure.
Thus,

3. . -
Vis1/23 ‘ aa‘ ‘ pJ l Pivrs™Piy| (62)

Through numerical experimentation it has been
determined that a more robust sensor is obtained
if Eq. 62 is scaied by the local area and the
time step as was done in Eq. 49. A modified form
of first derivative of pressure sensor can be
calculated as the average of the first derivative

of the pressure at three or five nelghboring cell
faces. For example, instead of using equation
(62), one can use

Vi+1/23 = | Pey-3/25 * Pri-1/25 * Pei-1/23

* Peyessag /° (63)

Y Peie3s2)

By using the average over five neighboring cell
faces, unwanted "spikes" in the magnitude of the
viscosity coefficlent can be avolded. Other
viscosity sensors are discussed in reference
[(11]. We used R, between 2 and 10.

The main differences between the PBD model
[8] and the existing artificial dissipation model
[6] can be summarized as follows:

1) The artificial dissipation model [6]
introduces a non-physical source term into
the continuity equation, while the PBD model
ileaves the continuity equation intact.

2) The PBD model does not require fourth order
dissipation.

3) The second order dissipation used in the PBD
model is constructed from the actual physicai
dissipation which is always non-negative.

4) A computer code incorporating the PBD model
into the Euler equations can be easiiy
converted to a Navier-Stokes solver Dy
enforcing no-slip boundary conditions and by
using physical values for the viscosity
coefficients.

INTEGRATION SCHEMES

The integration scheme used with the
Flux-Vector-Spiitting methods is based on a
modified second order MacCormack [13] scheme in
which both the predictor and corrector steps use
upwind differences. The scheme is second order
accurate in both time and space. A linear
stability analysis of the scheme shows it to be
stable for a CFL number less than or equal to 2.
The time integration algorithm usec¢ with the
central difference schemes utilizing artificial
and physical dissipation models, is a four-step
rational Runge-Kutta method [8]. A linear
stability analysis shows the system to be stabie
for a CFL number iess than or egual to 2.8.
Having established the stability 1imit of a
scheme, the maximum time step for each iteration
can be determined. Referring again to the
two-dimensional Euler equations in the
transformed piane:

t ot
st = =1 (64)

where



- CFLAE tn " CFLAn

m§x(xi) max (oi)

The time step for each cell is determined from
the local linear stability conditions. The use
of 1ocal time steps implies that the procedure
will not be time accurate, but the convergence
rate will be improved.

BOUNDARY CONDITIONS

The farfieid boundary conditions are
calculated using Riemann invariants (assumed to
be iocally one-dimensional), which can be derived
with the aid of the one-dimensional equations of
motion written in the form [13]:

2 (2a, a8 _ o Bu, du, 2ada

Y -1 (Bt * “ax) * 3% 0 at * Usx * Y-1 9x °
(66)

Adding and subtracting Eq. 66 yields

3 9 2a
g+ wrarghus 3777) =0

0 _ 9 _ _2a
Brrw-a) Sl -39 =0 (67)

From Eq. 67 it can be shown that invariants are

2a 2a
Y- R2 =vu-3_5

Rt = u + (68)

Equations (68) are constant on the curves with the
slopes:

dx ax
gg-ute G -u- e (69)

By adding Eqs. 68, the normal velocity at the
boundary can be calculated. Subtracting Egs. 68
yields the speed of sound. Then, depending on the
direction of the normal velocity, the entropy and
tangential velocity are defined from the upwind
side by either using free-stream values or
extrapolating from the interior of the
computational domain.

The solid walil boundary condition implies
that the normal velocity at the solid boundary is
2ero:

(qn)boundary - (70)
Accordingly, for the normal direction (in
Cartesian form):
,01-02-qn-0 q3-qn+a=a
o, =Qq,-2a=-a (71)

Equations (71) suggest that only one flow quantity
is needed on the surface; the pressure is
extrapolated using the normal momentum equation.
The normal momentum can be obtained from the x and
y momentum equations:

_ u ou ou . 1 9py . ‘
X~mOom . nx(ﬁf tugy tvar v g ax) 0 (72)
BV v 3V ]
- A4 oy ov ., 1 9by
y-mom. ny (5% tugs v Var t g ay) 0 (73)

Upon adding Egqs. 72 and 73, the normal momentum
equation is:

du av 3 v
no3e Bt + u(nX il ny Bx)
3u du 1 3p
od 248, L)
v(n 3y ny 3y) * % En 0 (7

13 1 ap ap
p 3 p (nx 9% * ny ay)
7= (nx, ny) = direction cosines (75)

Then, using Eq. 71 and the chain rule, four
auxiliary equations are developed:

S

A 3
- . - - £ =0
q qQ n un_ + vn 0 T (unx + vny)

n X y
(76)
on °n
3 du, v, X,y X
9x (unx * vny) 0 nx 9x * ny 3x tu 9x v 9x
(77>
an on
2 coap L L T Ty
ay(unx+vny) 0 n, 5y + ny 3y + u 5y + v 5y
(78)
Substituting Eqs. 76-78 into Eq. T4 and
simplifying yields:
p an
i puiuj 5 i=1,2 jo=1,2 (79
J
Thus, the pressure at the boundary becomes:
P = p - 22 4p (80)
BODY i,j+1/2 on

where An is the normal distance from the solid
boundary. Certain formulations require ghost or
imaginary cells located inside the solid boundary.
To obtain flow gquantities inside these cells,
three conditions are specified and one condition
is extrapolated. The specified gquantities are:

@ gnost = ") 1j4172

- (how)ij+1/2

(81)

(@ dgnost = 9¢dige172 ¢ Polonost

while the linearly extrapolated quantity is:

PeuosT = 2PBODY T Pij+1/2 (82)
Once the pressure is known, the density is
determined from:

2 2 Y -1
p = p/iln, - 0 +vH) —3 } (83)

RESULTS

The first test case chosen to evaluate the
Fiux-Vector-Splitting (FVS) and central difference
schemes involved fiow around a NACA 0012 airfoil.



Cziculations were perfcrmel on & 125x32 C-type

grid (Fig. 1), Computations were performed on the

NC3A CRAY ¥/MP-U8 at the University of Illinois
and run for 2000 iterations. A non-iifting case
was tested for a freestream Mach number of Mg = .8
and an angle of attack ¢ o = 0°, To start the
computations, the entire domain was set to
free-stream conditions and the solid wall boundary
conditions were appiied impulsively. For
comparison purposes the pressure coefficlients from
the various schemes were plotted against the
pressure coefficients obtained with Jameson's
scheme. Figs. 2-6 show plots of the surface
pressure coefficient for the four FVS schemes and
the central difference scheme with the Artificial
Dissipation (AD) and Physically Based Dissipation
(PBD) modeis. It is apparent that Van Leer's
scheme gives the sharpest shock while Whitfield's
scheme yields the most smeared shock. The shocks
obtained with the schemes of Steger-Warming and
Deese are better than Whitfield's, but not as
sharp as Van Leer's. Also note that Whitfleld's
scheme yields an unusually large post-shock
pressure recovery region. The use of PBD model

yielded a somewhat sharper shock than the AD model.

Note, however, a small overshoot upstream of the
shock using the PBD model. Figures 7-12
{llustrate the flowfieid pressure contours for the
FVS and central difference schemes. Again, one
can note the unusually large pressure recovery
region obtained with Whitfield's scheme. The
results obtained with the two dissipation models
are very similar. Figures 13-18 present total
pressure 1o0ss contours for all the schemes. Since
the total pressure loss can be related to the
entropy, one would expect the contours to resemble
streamlines. The FVS schemes appear to develop
non-physical total pressure losses near the
ieading edge. The FVS schemes, with the exception
of Van Leer's, also develop small "islands" of
total pressure loss downstream of the shock. The
resuits obtained with the PBD model may appear
unusual, but the actual values for the total
pressure loss ahead of the shock are smaller than
those from most of the other schemes.

A 1lifting case was run for a freestream Mach
number of Mg = .80 and an angle of attack of a =
1.25°. Figures 20-24 iliustrate the surface
pressure coefficient for all the schemes plotted

against the results obtained with Jameson's scheme.

Note that Van Leer's scheme yieids sharp shocks on
both the upper and iower surfazes. Again,
Whitfield's scheme smears the shocks. The PBD
model yieids a slightly sharper shock than the AD
model on both the upper and lower surfaces.
Figures 25-30 show flowfield pressure contours for
all the schemes and Figures 31-36 iilustrate the
total pressure loss contours for all -.¢ schemes.
Note that using Whitfield's scheme, : :omplete
“boundary layer" has deveioped near tne airfoil
surface.

CONCLUSION

A comparative study of aigorithms for the
soiution of the Euler equetions has been performed
using four Fiux-Vector-Spiitting (FVS) schemes and
a central difference scheme with two different
dissipation models. All schemes were tested for
the case of steady, invisecid, transonic airfoil
fiow. Van Leer's FVS scheme is robust and appears
to gevuerate littie numerical dissipation. The FVS
schenes of Deese and Steger yieid results similar

v¢ Van Leer's, thnough not quite as rodust.
whitfieid's FVS scherme generates 1arge amounts cf
numerical dissipation, which smears shocks and
causes excessive pressure recovery. A new,
Physically Based Dissipation (PBD) model for
central difference schemes has been compared to
Jameson's Artificial Dissipation (AD) model. The
PBD modei generates strictly non-negative
dissipation. Also PBD does not aiter the
continuity equation like the AD model, and it does
not reguire fourth order dissipation terms.

The PBD model allows an Euler soliver to be readily
converted to a Navier-Stokes code and can be
appiied to three-dimensional cases.
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