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10.1 Introduction

Inverse problems usually involve theminimization of some objective function as part of their
formulation. Such minimization procedures require the use of an optimization technique.
Thus, in this chapter, we address solution methodologies for single-objective optimization
problems, based on minimization techniques. Several gradient-based and non-gradient-
based (stochastic) techniques are discussed, together with their basic implementation steps
and algorithms. We present some deterministic methods, such as the conjugate gradient
method, the NewtonMethod, and the Davidon–Fletcher–Powell (DFP)method (Levenberg,
1944; Hestenes and Stiefel, 1952; Davidon, 1959; Fletcher and Powell, 1963;Marquardt, 1963;
Fletcher and Reeves, 1964; Broyden, 1965, 1967; Daniel, 1971; Polak, 1971; Beale, 1972; Bard,
1974; Beck and Arnold, 1977; Moré, 1977; Powell, 1977; Tikhonov andArsenin, 1977; Dennis
and Schnabel, 1983; Beck et al., 1985; Stoecker, 1989; Murio, 1993; Alifanov, 1994; Alifanov
et al., 1995; Kurpisz and Nowak, 1995; Dulikravich and Martin, 1996; Trujillo and Busby,
1997; Jaluria, 1998; Beck, 1999; Belegundu and Chandrupatla, 1999; Colaço and Orlande,
1999, 2001a,b, 2004; Fletcher, 2000; Ozisik and Orlande, 2000; Woodbury, 2002). In addition,
we present some of the stochastic approaches, such as the simulated annealing method
(Corana et al., 1987; Goffe et al., 1994), the differential evolutionarymethod (Storn and Price,
1996), genetic algorithms (Goldberg, 1989; Deb, 2002), and the particle swarm method
(Kennedy and Eberhart, 1995; Kennedy, 1999; Eberhart et al., 2001; Naka et al., 2001).
Deterministic methods are, in general, computationally faster (they require fewer objective
function evaluations in case of problemswith low number of design variables) than stochas-
tic methods, although they can converge to a local minima or maxima, instead of the global
one. On the other hand, stochastic algorithms can ideally converge to a global maxima or
minima, although they are computationally slower (for problems with relatively low num-
ber of design variables) than the deterministic ones. Indeed, the stochastic algorithms can
require thousands of evaluations of the objective functions and, in some cases, become
nonpractical. In order to overcome these difficulties, wewill also discuss the so-called hybrid
algorithms that take advantage of the robustness of the stochastic methods and the fast
convergence of the deterministic methods (Dulikravich et al., 1999, 2003, 2004, 2008; Colaço
and Orlande, 2001a,b; Colaço et al., 2004, 2005 AQ1, 2006, 2008; Colaço and Dulikravich, 2006,
2007; Dulikravich andColaço, 2006;Wellele et al., 2006; Silva et al., 2007; Padilha et al., 2009).
Each technique provides a unique approachwith varyingdegrees of convergence, reliability,
and robustness at different stages during the iterative minimization process. A set of
analytically formulated rules and switching criteria can be coded into the program to
automatically switch back and forth among the different algorithms as the iterative process
advances (Dulikravich et al., 1999; Colaço et al., 2005, 2008).
In many optimization problems, evaluation of the objective function is extremely expen-

sive and time consuming. For example, optimizing chemical concentrations of each of the
alloying elements in a multicomponent alloy requires manufacturing each candidate alloy
and evaluating its properties using classical experimental techniques. Even with the most
efficient optimization algorithms (Dulikravich et al., 2008), this means that often thousands
of alloys having different chemical concentrations of their constitutive elements would have
to be manufactured and tested. This is understandably too expensive to be economically
acceptable. Similar is the situation when attempting to optimize three-dimensional aerody-
namic shapes. Aerodynamics of thousands of different shapes needs to be analyzed using
computational fluid dynamics software, which would be unacceptably time consuming.
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For problems where objective function evaluations are already expensive and

AQ2

where the
number of design variables is large thus requiring many such objective function evalu-
ations, the only economically viable approach to optimization is to use an inexpensive
and as accurate as possible surrogate model (a metamodel or a response surface) instead
of the actual high fidelity analysis method. Such surrogate models are often known as
response surfaces (Colaço et al., 2007, 2008). In the case of more than three design
variables, a response surface becomes a high-dimensional hypersurface that needs to be
fitted through the available (often small) set of high fidelity values of the objective
function. Once the response surface (hypersurface) is created using an appropriate ana-
lytic formulation, it is very easy and fast to search such a surface for its minima given a
set of values of design variables supporting such a response surface. Therefore, we also
present in this chapter some basic concepts related to the response surface generation
methodology.

10.2 Basic Concepts

10.2.1 Objective Function

The first step in establishing a procedure for the solution of either inverse problems or
optimization problems is the definition of an objective function. The objective function is the
mathematical representation of an aspect under evaluation, which must be minimized (or
maximized). The objective function can be mathematically stated as

S ¼ S(P); P ¼ {P1,P2, . . . ,PN} (10:1)

where P1, P2, . . . , PN are the variables of the problem under consideration, which can be
modified in order to find the minimum value of the function S.
The relationship between S and P can, most of the time, be expressed by a physical=

mathematical model. However, in some cases, this relationship is impractical or even
impossible and the variation of S with respect to P must be determined by experiments.

10.2.2 Unimodal versus Multimodal Objective Functions

Some of the methods that will be discussed here are only applicable to certain types of
functions, namely unimodal, which are those having only one maximum (or minimum)
inside the range of parameters being analyzed. This does not mean that the function must
be continuous, as one can see from the Figure 10.1, where the first two functions are
unimodals. The third function is unimodal in the interval 0<P< 3p=2 and the forth
function is multimodal.
For unimodal functions, it is extremely easy to eliminate parts of the domain being

analyzed in order to find the place of the maximum or minimum. Consider, for example,
the first function of Figure 10.1: if we are looking for the maximum value of the function,
and we know that S(P¼ 1) is less than S(P¼ 2), we can immediately eliminate the region to
the left of P¼ 1, since the function is monotonically increasing its value. This is not true for
multimodal functions, sketched as the forth function in Figure 10.1.
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10.2.3 Single- and Multi-Objective Functions

This chapter will deal only with single-objective functions. However, it is interesting to
introduce the reader to the multi-objective optimization problems (Deb, 2002) since their
applications in industry are very important. Consider, for example, the project of devel-
opment of an automobile. Usually, we are not interested in only minimizing or maximizing
a single function (e.g., fuel consumption), but extremizing a large number of objective
functions as, for example: fuel consumption, automobile weight, final price, performance,
etc. This problem is called a multi-objective optimization and it is more complex than the
case of a single-objective optimization.
In an aero-thermo-elasticity problem, for example, several disciplines are involved with

various (often conflicting) objective functions to be optimized simultaneously. This case
can be illustrated by the Figure 10.2.

10.2.4 Constraints

Usually, the variables P1, P2, . . . , PN, which appear in the objective function formulation,
are only allowed to vary within some prespecified ranges. Such constraints are, for
example, due to physical or economical limitations.
We can have two types of constraints. The first one is the equality constraint, which can be

represented by

G ¼ G(P) ¼ 0 (10:2)

This kind of constraint can represent, for example, the prespecified power of an automobile.

(a) (b) (c) (d)
2 4 6 0 2 4 6 0 2 4 6 0 2 4 60

FIGURE 10.1
Some AQ3examples of functions S (ordinate) of a single design variable P (abscissa).

FIGURE 10.2
An example of a multi-objective design opti-
mization problem.
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The second type of constraint is called inequality constraint, and it is represented by

Q ¼ Q(P) < 0 (10:3)

This can represent, for example, the maximum temperature allowed in a gas turbine
engine.

10.2.5 Optimization Problems

Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer
problems are well-posed. The solution of a well-posed problem must satisfy the conditions
of existence, uniqueness, and stability with respect to the input data (Hadamard, 1923). The
existence of a solution for an inverse heat transfer problem may be assured by physical
reasoning. On the other hand, the uniqueness of the solution of inverse problems can be
mathematically proved only for some special cases. Also, the inverse problem is very
sensitive to random errors in the measured input data, thus requiring special techniques
for its solution in order to satisfy the stability condition.
Successful solution of an inverse problem generally involves its reformulation as an

approximate well-posed problem and makes use of some kind of regularization (stabiliza-
tion) technique. Although the solution techniques for inverse problems do not necessarily
make use of optimization techniques, many popular methods are based on them.
Despite their similarities, inverse and optimization problems are conceptually different.

Inverse problems are concerned with the identification of unknown quantities appearing in the
mathematical formulation of physical problems, by using measurements of the system response. On
the other hand, optimization problems generally deal with the minimization or maximization of a
certain objective or cost function, in order to find design variables that will result in extreme value
of the objective function. In addition, inverse and optimization problems involve other
different concepts. For example, the solution technique for an inverse problem is required
to cope with instabilities resulting from the noisy measured input data, while for an
optimization problem, the input data is given by the desired response(s) of the system.
In contrast to inverse problems, the solution uniqueness may not be an important issue for
optimization problems, as long as the solution obtained is physically feasible and can be
practically implemented. Engineering applications of optimization techniques are very
often concerned with the minimization or maximization of different quantities, such as
minimumweight (e.g., lighter airplanes), minimum fuel consumption (e.g., more economic
cars), maximum autonomy (e.g., longer range airplanes), etc. The necessity of finding the
maximum or minimum values of some parameters (or functions) can be governed by
economic factors, as in the case of fuel consumption, or design characteristics, as in the
case of maximum autonomy of an airplane. Sometimes, however, the decision is more
subjective, as in the case of choosing a car model. In general, different designs can be
idealized for a given application, but only a few of them will be economically viable.
For optimization problems, the objective function S can be, for example, the fuel con-

sumption of an automobile and the variables P1, P2, . . . , PN can be the aerodynamic profile of
the car, the material of the engine, the type of wheels used, the distance from the floor, etc.
In this chapter, we present deterministic and stochastic techniques for the minimization

of an objective function S(P) and the identification of the parameters P1, P2, . . . , PN, which
appear in the objective function formulation. This type of minimization problem is solved
in a space of finite dimension N, which is the number of unknown parameters. For many
minimization problems, the unknowns cannot be recast in the form of a finite number of
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parameters and the minimization needs to be performed in an infinite dimensional space of
functions (Hadamard, 1923; Daniel, 1971; Beck and Arnold, 1977; Tikhonov and Arsenin,
1977; Sabatier, 1978; Morozov, 1984; Beck et al., 1985; Hensel, 1991; Murio, 1993; Alifanov,
1994; Alifanov et al., 1995; Kurpisz and Nowak, 1995; Dulikravich and Martin, 1996;
Kirsch, 1996; Trujillo and Busby, 1997; Isakov, 1998; Beck, 1999; Denisov, 1999; Yagola
et al., 1999; Zubelli, 1999; Ozisik and Orlande, 2000; Ramm et al., 2000; Woodbury, 2002).

10.3 Deterministic Methods

In this section, some deterministic methods like the steepest descent method, the conjugate
gradient method, the Newton–Raphson, and the quasi-Newton methods will be discussed.
Some practical aspects and limitations of such methods will be addressed.
These types of methods, as applied to nonlinear minimization problems, generally rely

on establishing an iterative procedure, which, after a certain number of iterations, will
hopefully converge to the minimum of the objective function. The iterative procedure can
be written in the following general form (Bard, 1974; Beck and Arnold, 1977; Dennis and
Schnabel, 1983; Stoecker, 1989; Alifanov, 1994; Alifanov et al., 1995; Jaluria, 1998;
Belegundu and Chandrupatla, 1999; Fletcher, 2000):

Pkþ1 ¼ Pk þ akdk (10:4)

where
P is the vector of design variables
a is the search step size
d is the direction of descent
k is the iteration number

An iteration step is acceptable if Skþ 1< Sk. The direction of descent d will generate an
acceptable step if and only if there exists a positive definite matrix R, such that d¼�RrS
(Bard, 1974).
Such requirement results in directions of descent that form an angle greater than 908with

the gradient direction. A minimization method in which the directions are obtained in this
manner is called an acceptable gradient method (Bard, 1974).
A stationary point of the objective function is one at which rS¼ 0. The most that we can

hope for any gradient-based method is that it converges to a stationary point. Convergence
to the trueminimum can be guaranteed only if it can be shown that the objective function has
no other stationary points. In practice, however, one usually reaches the local minimum in
the valley where the initial guess for the iterative procedure was located (Bard, 1974).

10.3.1 Steepest Descent Method

The most basic gradient-based method is the steepest descent method (Daniel, 1971;
Stoecker, 1989; Jaluria, 1998; Belegundu et al., 1999). Some of the concepts developed
here will be used in the next sections, where we will discuss more advanced methods.
The basic idea of this method is to ‘‘walk’’ in the opposite direction of the locally highest
variation of the objective function, in order to locate the minimum value of it. This can be
exemplified in Figure 10.3.
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The objective function can be mathematically stated as

S ¼ S(P); P ¼ {P1,P2, . . . ,PN} (10:5)

The direction in which the objective function S varies most rapidly is the direction of
gradient of S. For example, for the case with two variables (Figure 10.3), the gradient is

rS ¼ qS
qP1

i1 þ qS
qP2

i2 (10:6)

The iterative process for finding the minimum value of the objective function can be
written in the most general terms as

Pkþ1 ¼ Pk � akrS(Pk) (10:7)

where
P is the vector of variables being optimized
a is the search step size
k is a counter for the iterations

Comparing Equations 10.4 and 10.7, one can check that for the steepest descent method,
the direction of descent d is given by

dk ¼ �rS(Pk) (10:8)

In spite of this being the natural choice for the direction of descent, it is not very efficient as
can be seen in Figure 10.3. Usually, the method starts with large variations in the objective
function. As the minimum of the objective function is being approached, the convergence
rate of this method becomes very low.

Initial guess

20

15

10

5

0

–5

–10
–10 –5 0 5 10 15 20

Minimum

FIGURE 10.3
Convergence history for the steepest descent method.

Orlande/Thermal Measurements and Inverse Techniques K12031_C010 Page Proof page 361 21.12.2010 4:56am Compositor Name: PG1421

A Survey of Basic Deterministic, Heuristic, and Hybrid Methods 361



The optimum choice for the search step size is the one that causes the maximum
variation in the objective function. Thus, using the iterative procedure given by Equation
10.7 and the definition of the objective function (10.1), we have that at iteration level kþ 1,

S(Pkþ1) ¼ S(Pk þ akdk) (10:9)

The optimum value of the step size a is obtained by solving

dS(Pkþ1)
dak ¼ 0 (10:10)

Using the chain rule,

dS(Pkþ1)
dak ¼ dS(Pkþ1

1 )
dPkþ1

1

dPkþ1
1

dak þ dS(Pkþ1
2 )

dPkþ1
2

dPkþ1
2

dak þ � � � þ dS(Pkþ1
N )

dPkþ1
N

dPkþ1
N

dak (10:11)

Or

dS(Pkþ1)
dak ¼ [rS(Pkþ1)]T,

dPkþ1

dak

� �
(10:12)

However, from Equations 10.7 and 10.8, it follows that

dPkþ1

dak ¼ dk ¼ �rS(Pk) (10:13)

Substituting Equation 10.13 into (10.12) and (10.10), it follows that for steepest descent
(Figure 10.4)

[rS(Pkþ1)]T, rS(Pk)
� � ¼ 0 (10:14)

Thus, the optimum value of the search step size is the one that makes the gradients of the
objective function at two successive iterations mutually orthogonal (Figure 10.3).
In ‘‘real life’’ applications, it is not possible to use Equation 10.14 to evaluate the search

step size, a. Thus, some univariate search methods need to be employed in order to find the
best value of the search step size at each iteration. In the case of a unimodal function, some
classical procedures can be used, such as the dichotomous search (Stoecker, 1989; Jaluria,
1998), Fibonacci search (Stoecker, 1989; Jaluria, 1998), golden search (Stoecker, 1989;
Jaluria, 1998), and cubic spline interpolation (de Boor, 1978), among others. However, for
some realistic cases, the variation of the objective function with the search step size is not
unimodal and then, more robust techniques are presented. The first one is the exhaustive
search method and the second one is a technique based on exhaustive interpolation.

10.3.1.1 Exhaustive AQ4Search

This method (Stoecker, 1989; Jaluria, 1998) is one of the less efficient search methods
available for sequential computation (which means not parallel computation). However,
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it is a very good approach for parallel computing. Let us suppose, for example, that we are
on a highway searching for a gas station with the lowest price of gasoline within an
interval of 5 miles. If we do not have a newspaper or a telephone, the best way to do
this is to go to each gas station and check the price and then determine the lowest value.
This is the basis of the exhaustive search method. This method serves as an introduction to
the next method, which is based on splines.
The basic idea consists in uniformly dividing the domain that we are interested in (the

initial uncertainty region), and finding the region where the maximum or minimum value
are located. Let us call this domain I0. Let us suppose, for instance, the situation shown in
Figure 10.5, where an uncertainty interval I0 was divided into eight subregions, which are
not necessarily the same size.

S(Pk)dk+1 = –

k = 0

Start

Initial guess for Pk

k = k + 1

No

No

Converged?

Pk is an
optimum

Pk+1 = Pk+ αkdk+1

End

Yes

Determine αk

Calculate
  S(Pk) Calculate

  S(Pk)

Yes

3. Did    S(Pk)

value?
reach an expected

2. S(Pk) reached
an expected
value?

1. Max iterations
reached?

FIGURE 10.4
Iterative procedure for the steepest descent method.

FIGURE 10.5
Exhaustive search method.
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The objective function is evaluated at each of the nine points shown in the previous
figure. From this analysis, we obtain the following:

y1 < y2 < y3 < y4 < y5
y5 > y6 > y7 > y8 > y9

(10:15)

Thus, the maximum point must be located between x4 and x6. Notice that we cannot say
that the optimum is located between x4 and x5, nor between x5 and x6, since only a more
refined grid could indicate this.
Thus, the final uncertainty interval I is (x6� x4) and the optimum point is located

somewhere inside this interval. It can be shown (Stoecker, 1989; Jaluria, 1998) that I is
given by

I ¼ 2I0
nþ 1

(10:16)

where n is the number of objective functions evaluated. Notice that, once I is found, the
process can be restarted making I0¼ I and a more precise location for the maximum can be
found. However, its precise location can never be reached.
In terms of sequential computation, this method is very inefficient. However, if we have

a hypothetically large number of computers, all objective functions at each point in I0 can
be evaluated at the same time. Thus, for the example shown in Figure 10.5, for n¼ 9, if we
can assign the task of calculating the objective function at each point to an individual
computer, the initial uncertainty region is reduced by five times within the time needed to
just perform one calculation of the entire region using a single computer. Other more
sophisticated methods, such as the Fibonacci method, for example, need sequential evalu-
ations of the objective function. The Fibonacci method, for example, requires four objective
function evaluations for the same reduction of the uncertainty region. Thus, in spite of its
lack of efficiency in single processor applications, the exhaustive search method may be
very efficient in parallel computing applications. A typical parallel computing arrange-
ment is where one computer is the master and the other computers perform the evaluations
of the objective function at each of the locations. A typical arrangement for the case
depicted in Figure 10.5 is presented in Figure 10.6 where there are 10 computers; one of
them being the master and the other nine performing the evaluations of the objective
functions at the nine locations shown on Figure 10.5.

10.3.1.2 Exhaustive Interpolation Search

This method is an improvement over the previous one, in that it requires fewer calculations
to find the location of the minima. The method starts as the previous one, where domain is
divided into several regions, where the objective functions are evaluated. The objective
function is evaluated at a number of points in this domain. Next, a large number of points
needs to be generated inside this domain and the objective function at these new points is
estimated by spline fitting at the original points and interpolating at the new points using
cubic splines (Dulikravich and Martin, 1994), B-splines (de Boor, 1978), kriging (Oliver and
Webster, 1990), or other interpolants. Interrogating these interpolated values, we can find
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the region where the maximum or minimum values are located. The process can be
repeated until a sufficiently small interval of uncertainty is obtained.

10.3.2 Conjugate Gradient Method

The steepest descent method, in general, converges slowly for non-quadratic functions,
since optimum search step sizes produce orthogonal gradients between two successive
iterations. The conjugate gradient method (Hestenes and Stiefel, 1952; Fletcher and Reeves,
1964; Daniel, 1971; Polak, 1971; Beale, 1972; Alifanov, 1974, 1994; Powell, 1977; Stoecker,
1989; Jarny et al., 1991; Artyukhin, 1993; Truffart et al., 1993; Dantas and Orlande, 1996;
Huang and Tsai, 1997; Machado and Orlande, 1997; Orlande et al., 1997; Alencar Jr. et al.,
1998; Colaço and Orlande, 1998; Jaluria, 1998; Belegundu and Chandrupatla, 1999; Colaço
and Orlande, 2000, 2001a,b, 2002) tries to improve the convergence rate of the steepest
descent method by choosing the directions of descent that reach the minimum value of the
objective function faster. The iterative process for this method is given by the same general
equation used in the steepest descent method, Equation 10.4. The difference is in the
formulation for the direction of descent, which, for the conjugate gradient method,

Workstation Workstation

Workstation

Workstation

Workstation

Workstation Workstation Workstation

Workstation

Workstation

Workstation

Workstation

FIGURE 10.6
Typical setup for a parallel computing.
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is given as a conjugation of the gradient and the direction of descent of the previous
iteration, given as

dkþ1 ¼ �rS(Pk)þ gkdk�1 þ ckdq (10:17)

where gk and ck are conjugation coefficients. The superscript q in Equation 10.17 denotes the
iteration number where a restarting strategy is applied to the iterative procedure of the
conjugate gradient method. Restarting strategies for the conjugate gradient method of
parameter estimation were suggested by Powell (1977) in order to improve its convergence
rate. Different versions of the conjugate gradient method can be found in the literature
depending on the form used for the computation of the direction of descent given by
Equation 10.17 (Hestenes and Stiefel, 1952; Fletcher and Reeves, 1964; Daniel, 1971; Polak,
1971; Beale, 1972; Alifanov, 1974, 1994; Powell, 1977; Jarny et al., 1991; Artyukhin, 1993;
Truffart et al., 1993; Dantas and Orlande, 1996; Machado and Orlande, 1997; Orlande et al.,
1997; Alencar Jr. et al., 1998). In the Fletcher–Reeves version (Fletcher and Reeves, 1964), the
conjugation coefficients gk and ck are obtained from the following expressions (Fletcher and
Reeves, 1964; Daniel, 1971; Alifanov, 1974, 1994; Powell, 1977; Jarny et al., 1991; Dantas and
Orlande, 1996; Huang and Tsai, 1997; Machado and Orlande, 1997; Orlande et al., 1997):

gk ¼ krS(Pk)k2
krS(Pk�1)k2 , with g0 ¼ 0 for k ¼ 0 (10:18a)

ck ¼ 0, for k ¼ 0, 1, 2 (10:18b)

In the Polak–Ribiere version of the conjugate gradient method (Daniel, 1971; Polak, 1971;
Powell, 1977; Jarny et al., 1991; Artyukhin, 1993; Truffart et al., 1993; Alifanov, 1994), the
conjugation coefficients are given by

gk ¼ [rS(Pk)]T[rS(Pk)�rS(Pk�1)]
krS(Pk�1)k2 , with g0 ¼ 0 for k ¼ 0 (10:19a)

ck ¼ 0, for k ¼ 0, 1, 2, . . . (10:19b)

Based on a previous work by Beale (1972), Powell (1977) suggested the following expres-
sions for the conjugation coefficients, which gives the so-called Powell–Beale’s version of
the conjugate gradient method (Beale, 1972; Alifanov, 1974; Powell, 1977):

gk ¼ [rS(Pk)]T[rS(Pk)�rS(Pk�1)]

[dk�1]T[rS(Pk)�rS(Pk�1)]
, with g0 ¼ 0 for k ¼ 0 (10:20a)

ck ¼ [rS(Pk)]T[rS(Pqþ1)�rS(Pq)]

[dq]T[rS(Pqþ1)�rS(Pq)]
, with g0 ¼ 0 for k ¼ 0 (10:20b)

In accordance with Powell (1977), the application of the conjugate gradient method with
the conjugation coefficients given by Equations 10.20 requires restarting when gradients at
successive iterations tend to be non-orthogonal (which is a measure of the local nonlinear-
ity of the problem) and when the direction of descent is not sufficiently downhill. Restart-
ing is performed by making ck¼ 0 in Equation 10.17.
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The non-orthogonality of gradients at successive iterations is tested by the following
equation:

ABS([rS(Pk�1)]TrS(Pk)) � 0:2 krS(Pk)k2 (10:21a)

where ABS(�) denotes the absolute value.
A non-sufficiently downhill direction of descent (i.e., the angle between the direction of

descent and the negative gradient direction is too large) is identified if either of the
following inequalities is satisfied:

[dk]TrS(Pk) � �1:2 krS(Pk)k2 (10:21b)

[dk]TrS(Pk) � �0:8 krS(Pk)k2 (10:21c)

We note that the coefficients 0.2, 1.2, and 0.8 appearing in Equations 10.21a through 10.21c
are empirically determined and are the same values used by Powell (1977).
In Powell–Beale’s version of the conjugate gradient method, the direction of descent

given by Equation 10.17 is computed in accordance with the following algorithm for k � 1
(Powell, 1977):

Step 1: Test the inequality (10.21a). If it is true, set q¼ k� 1.

Step 2: Compute gk using Equation 10.20a.

Step 3: If k¼ qþ 1, set ck¼ 0. If k 6¼ qþ 1, compute ck using Equation 10.20b.

Step 4: Compute the search direction dkþ 1 using Equation 10.17.

Step 5: If k 6¼ qþ 1, test the inequalities (10.21b and 10.21c). If either one of them is
satisfied, set q¼ k� 1 and ck¼ 0. Then, recompute the search direction using
Equation 10.17.

The steepest descent method, with the direction of descent given by the negative gradient
equation, would be recovered with gk¼ck¼ 0 for any k in Equation 10.17. We note that the
conjugation coefficients gk given by Equations 10.18a, 10.19a, and 10.20a are equivalent for
quadratic functions, because the gradients at different iterations are mutually orthogonal
(Daniel, 1971; Powell, 1977).
The same procedures used for the evaluation of the search step size in the steepest

descent method can be employed here. Figure 10.7 illustrates the convergence history for
the Fletcher–Reeves version of the conjugate gradient method for the same function
presented in Figure 10.3. One can see that the conjugate gradient method is faster than
the steepest descent. It is worth noting that the gradients between two successive iterations
are no longer mutually orthogonal.
Colaço and Orlande (1999) presented a comparison of Fletcher–Reeves’, Polak–Ribiere’s,

and Powell–Beale’s versions of the conjugate gradient method, as applied to the estimation
of the heat transfer coefficient at the surface of a plate. This inverse problem was solved as
a function estimation approach, by assuming that no information was available regarding
the functional form of the unknown. Among the three versions tested for the conjugate
gradient method, the method suggested by Powell and Beale appeared to be the best, as
applied to the cases examined in that paper. This algorithm did not present the anomalous
increase of the functional as observed with the other versions, and its average rates of
reduction of the functional were the largest. As a result, generally, the smallest values for
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the RMS AQ5error of the estimated functions were obtained with Powell–Beale’s version of the
conjugate gradient method.
Figure 10.8 shows the iterative procedure for the Fletcher–Reeves version (Fletcher and

Reeves, 1964) of the conjugate gradient method.

10.3.3 Newton–Raphson Method

While the steepest descent and the conjugate gradient methods use gradients of the
objective function in their iterative procedures, the Newton–Raphson method (Daniel,
1971; Stoecker, 1989; Jaluria, 1998; Belegundu and Chandrupatla, 1999) uses information
of the second derivative of the objective function in order to achieve a faster convergence
rate (which does not necessarily mean a shorter computing time).

FIGURE 10.7
Convergence history for the Fletcher–Reeves version of
the conjugate gradient method.
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FIGURE 10.8
Iterative procedure for the Fletcher–Reeves version of the conjugate gradient method.
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Let us consider a function S(P), which is at least twice differentiable. The Taylor expan-
sion of S(P) around a vector h is given by

S(Pþ h) ¼ S(P)þrS(P)Thþ 1
2
hTD2S(P)hþO(h3) (10:22)

where rS(P) is the gradient (vector of first-order derivatives), while D2S(P) is the Hessian
(matrix of second-order derivatives).
If the objective function S(P) is twice differentiable, then the Hessian is always symmet-

rical, and we can write

rS(Pþ h) ffi rS(P)þD2S(P)h (10:23)

The optimum is obtained when the left side of Equation 10.23 vanishes. Thus, we have

hoptimum ffi �[D2S(P)]�1rS(P) (10:24)

and the vector that optimizes the function S(P) is

(Pþ hoptimum) ffi P� [D2S(P)]�1rS(P) (10:25)

Thus, introducing a search step size, which can be used to control the rate of convergence
of the method, we can rewrite the Newton–Raphson method in the form of the Equation
10.4 where the direction of descent is given by

dkþ1 ¼ �[D2S(Pk)]�1rS(Pk) (10:26)

The Newton–Raphson method is faster than the conjugate gradient method as demon-
strated in Figure 10.9. However, the calculation of the Hessian matrix coefficients takes a
long time. Figure 10.10 shows the iterative procedure for the Newton–Raphson method.
Some other methods, which do not require second-order derivatives, so-called quasi-
Newton methods, will be addressed in the next section.

FIGURE 10.9
Convergence history for the Newton–Raphson
method.
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10.3.4 Quasi-Newton Methods

The quasi-Newton methods (Daniel, 1971; Stoecker, 1989; Jaluria, 1998; Belegundu and
Chandrupatla, 1999) try to calculate the Hessian appearing in the Newton–Raphson
method in a manner that does not involve second-order derivatives. Usually, they employ
approximation for the Hessian based only on first-order derivatives. Thus, they have a
slower convergence rate than the Newton–Raphson method, but they are overall compu-
tationally faster.
Let us define a new matrix H, which is an approximation to the inverse of the Hessian as

Hk ¼ [D2S(Pk)]�1 (10:27)

Thus, the quasi-Newton methods follow the general iterative procedure given by Equation
10.4, where the direction of descent is given by

dkþ1 ¼ �HkrS(Pk) (10:28)

The matrix H for the quasi-Newton methods is iteratively calculated as

Hk ¼ Hk�1 þMk�1 þNk�1 for k ¼ 1, 2, . . . (10:29a)

Hk ¼ I for k ¼ 0 (10:29b)

where I is the identity matrix. This means that during the first iteration, the quasi-Newton
method starts as the steepest descent method.
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FIGURE 10.10
Iterative procedure for the basic Newton–Raphson method implementation.
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Different quasi-Newton methods can be found depending on the choice for the matrices
M and N. For the DFP method (Davidon, 1959; Fletcher and Powell, 1963), such matrices
are given by

Mk�1 ¼ ak�1 d
k�1(dk�1)T

(dk�1)TYk�1
(10:30a)

Nk�1 ¼ � (Hk�1Yk�1)(Hk�1Yk�1)T

(Yk�1)THk�1Yk�1 (10:30b)

where

Yk�1 ¼ rS(Pk)�rS(Pk�1) (10:30c)

Figure 10.11 shows the results for the minimization of the objective function shown before,
using the DFP method. One can see that its convergence rate is between the conjugate
gradient method and the Newton–Raphson method.
Note that, since the matrix H is iteratively calculated, some errors can be propagated

and, in general, the method needs to be restarted after certain number of iterations (Colaço
et al., 2006). Also, since the matrix M depends on the choice of the search step size a, the
method is very sensitive to its value.
A variation of the DFPmethod is the Broyden–Fletcher–Goldfarb–Shanno (BFGS)method

(Davidon, 1959; Fletcher and Powell, 1963; Broyden, 1965, 1967), which is less sensitive to the
choice of the search step size. For this method, the matrices M and N are calculated as

Mk�1 ¼ 1þ (Yk�1)THk�1Yk�1

(Yk�1)Tdk�1

 !
dk�1(dk�1)T

(dk�1)TYk�1
(10:31a)

Nk�1 ¼ �dk�1(Yk�1)THk�1 þHk�1Yk�1(dk�1)T

(Yk�1)Tdk�1 (10:31b)

FIGURE 10.11
Convergence history for the DFP method.
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Figure 10.12 shows the iterative procedure for the BFGS method.
At this point, it is of interest to explore the influence on the initial guess for the four

methods introduced thus far. Usually, all these methods quickly converge to the minimum
value if it is close to the initial guess. The Newton–Raphson method, however, without the
search step size, moves to the extreme point closest to the initial guess, irregardless if it is a
maximum, minimum, or a saddle point. This is the reason why we introduce a search step
size in Equation 10.25. The search step size prevents the method from jumping to a
maximum value when we look for a minimum and vice versa. Figures 10.13 and 10.14
show the influence of the initial guess for all four methods for a Rosenbrock ‘‘banana-
shape’’ function (More et al., 1981).
It should be pointed out that in real-life situations, topology of the objective function

space is not smooth and second derivatives of the objective function cannot be evaluated
with any degree of confidence. Thus, all gradient-based and second-derivative-based
search optimization algorithms have serious issue with robustness and reliability of their
applications to realistic problems.

10.3.5 Levenberg–Marquardt Method

The Levenberg–Marquardt method was first derived by Levenberg (1944), by modifying
the ordinary least squares norm. Later, in 1963, Marquardt (1963) derived basically the
same technique by using a different approach. Marquardt’s intention was to obtain a
method that would tend to the Gauss method in the neighborhood of the minimum of
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FIGURE 10.12
Iterative procedure for the BFGS method.
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the ordinary least squares norm, and would tend to the steepest descent method in the
neighborhood of the initial guess used for the iterative procedure. This method actually
converts a matrix that approximates the Hessian into a positive definite one, so that the
direction of descent is acceptable.
The method rests on the observation that if J is a positive definite matrix, then Aþ lJ is

positive definite for sufficiently large l. If A is an approximation for the Hessian, we can
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FIGURE 10.13
First initial guess for the (a) steepest descent, (b) conjugate gradient, (c) Newton–Raphson, and (d) DFP methods.
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choose J as a diagonal matrix whose elements coincide with the absolute values of the
diagonal elements of A (Bard, 1974).
The direction of descent for the Levenberg–Marquardt method is given by (Bard, 1974)

dk ¼ �(Ak þ lkJk)�1rS(Pk) (10:32)

and the step size is taken as ak¼ 1. Note that for large values of lk, a small step is taken
along the negative gradient direction. On the other hand, as lk tends to zero, the
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Second initial guess for the (a) steepest descent, (b) conjugate gradient, (c) Newton–Raphson, and (d) DFP
methods.
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Levenberg–Marquardt method tends to an approximation of Newton’s method based on
the matrix A. Usually, the matrix A is taken as that for the Gauss method (Bard, 1974; Beck
and Arnold, 1977; Ozisik and Orlande, 2000).

10.4 Evolutionary and Stochastic Methods

In this section, some evolutionary and stochastic methods like genetic algorithm, differential
evolution, particle swarm, and simulated annealing will be discussed. Evolutionary
methods, in contrast to the deterministic methods, do not rely, in general, on strong math-
ematical basis and do not make use of the gradient nor second derivative of the objective
function as a direction of descent. The evolutionary optimization algorithms attempt to
mimic nature in order to find the minimum of the objective function.

10.4.1 Genetic Algorithms

Genetic algorithms (Goldberg, 1989) are heuristic global optimization methods that are
based on the process of natural selection. Starting from a randomly generated population
of candidate designs, the optimizer seeks to produce improved designs from one gener-
ation to the next. This is accomplished by exchanging genetic information between designs
in the current population, in what is referred to as the crossover operation. Hopefully, this
crossover produces improved designs, which are then used to populate the next generation
(Goldberg, 1989; Deb, 2002).
The basic genetic algorithm works with a collection or population of candidate solutions

to the optimization problem. The algorithm works in an iterative manner. At each iteration,
also called generation, three operators are applied to the entire population of designs.
These operators are selection, crossover, and mutation. For the operators to be effective,
each candidate solution or design must be represented as a collection of finite parameters,
also called genes. Each design must have a unique sequence of these parameters that define
it. This collection of genes is often called the chromosome. The genes themselves are often
encoded as binary strings, though they can be represented as real numbers. The length of
the binary string determines how precisely the value, also known as the allele, of the gene
is represented.
The genetic algorithm applied to an optimization problem proceeds as follows. The

process begins with an initial population of random designs. Each gene is generated by
randomly generating 0’s and 1’s. The chromosome strings are then formed by combining
the genes together. This chromosome string defines the design. The objective function is
evaluated for each design in the population. Each design is assigned a fitness value, which
corresponds to the value of the objective function for that design. In the minimization case,
a higher fitness is assigned to designs with lower values of the objective function.
Next, the population members are selected for reproduction, based upon their fitness.

The selection operator is applied to each member of the population. The selection operator
chooses pairs of individuals from population who will mate and produce an offspring. In
the tournament selection scheme, random pairs are selected from the population and the
individual with the higher fitness of each pair is allowed to mate.
Once a mating pair is selected, the crossover operator is applied. The crossover operator

essentially produces new designs or offspring by combining the genes from the parent
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designs in a stochastic manner. In the uniform crossover scheme, it is possible to obtain any
combination of the two parent’s chromosomes. Each bit in each gene in the chromosome is
assigned a probability that crossover will occur (e.g., 50% for all genes). A random number
between 0 and 1 is generated for each bit in each gene. If a number greater than 0.5 is
generated, then that bit is replaced by the corresponding bit in the gene from the other
parent. If it is less than 0.5, the original bit in the gene remains unchanged. This process is
repeated for the entire chromosome for each of the parents. When complete, two offsprings
are generated, which may replace the parents in the population.
The mutation process follows next. When the crossover procedure is complete and a new

population is formed, the mutation operator is applied. Each bit in each gene in the design
is subjected to a chance for a change from 0 to 1, or vice versa. The chance is known as the
mutation probability, which is usually small. This introduces additional randomness into
the process, which helps to avoid local minima. Completion of the mutation process signals
the end of a design cycle. Many cycles may be needed before the method converges to an
optimum design.
For more details or for the numerical implementation of genetic algorithms, the reader is

referred to (Goldberg, 1989; Deb, 2002).

10.4.2 Differential Evolution

The differential evolution method (Storn and Price, 1996) is an evolutionary method based
on Darwin’s theory of evolution of the species (Darwin, 1859). This non-gradient-based
optimization method was created in 1995 (Storn and Price, 1996) as an alternative to the
genetic algorithm methods. Following Darwin’s theory, the strongest members of a popu-
lation will be more capable of surviving in a certain environmental condition. During the
mating process, the chromosomes of two individuals of the population are combined in a
process called crossover. During this process, mutations can occur, which can be good
(individual with a better objective function) or bad (individual with a worse objective
function). The mutations are used as a way to escape from local minima. However, their
excessive usage can lead to a non-convergence of the method.
The method starts with a randomly generated population in the domain of interest.

Thus, successive combinations of chromosomes and mutations are performed, creating
new generations until an optimum value is found.
The iterative process is given by (Figure 10.15)

Pkþ1
i ¼ d1Pk

i þ d2[aþ F(b� g)] (10:33)

where
Pi is the ith individual of the vector of parameters
a, b, and g are three members of population matrix P, randomly choosen
F is a weight constant, which defines the mutation (0.5< F< 1)
k is a counter for the generations
d1 and d2 are two functions that define the mutation

In this minimization process, if S(Pkþ1)< S(Pk), then Pkþ1 replaces Pk in the population
matrix P. Otherwise, Pk is kept in the population matrix.
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The binomial crossover is given as

AQ6
d1 ¼ 0, if R < CR

1, if R > CR
(10:34a)

d2 ¼ 1, if R < CR
0, if R > CR

(10:34b)

where
CR is a factor that defines the crossover (0.5<CR< 1)
R is a random number with uniform distribution between 0 and 1

10.4.3 Particle Swarm

This non-gradient-based optimization method was created in 1995 by an electrical engineer
(Russel Eberhart) and a social psychologist (James Kennedy) (Kennedy and Eberhart, 1995;
Kennedy, 1999; Eberhart and Kennedy, 2001; Naka et al., 2001) as an alternative to the
genetic algorithm methods. This method is based on the social behavior of various species
and tries to equilibrate the individuality and sociability of the individuals in order to locate
the optimum of interest. The original idea of Kennedy and Eberhart came from the
observation of birds looking for a nesting place. When the individuality is increased, the
search for alternative places for nesting is also increased. However, if the individuality
becomes too high, the individual might never find the best place. In other words, when the
sociability is increased, the individual learns more from their neighbor’s experience.
However, if the sociability becomes too high, all the individuals might converge to the
first place found (possibly a local minima).
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FIGURE 10.15
Iterative procedure for the differential evolution method.
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In this method, the iterative procedure is given by

Pkþ1
i ¼ Pk

i þ vkþ1
i (10:35a)

vkþ1
i ¼ avki þ br1i pi � Pk

i

� �þ br2i pg � Pk
i

� �
(10:35b)

where
Pi is the ith individual of the vector of parameters
vi¼ 0, for k¼ 0
r1i and r2i are random numbers with uniform distribution between 0 and 1
pi is the best value found by the ith individual, Pi

pg is the best value found by the entire population
0<a< 1; 1<b< 2

In Equation 10.35b, the second term on the right-hand side represents the individuality and
the third term the sociability. The first term on the right-hand side represents the inertia of
the particles and, in general, must be decreased as the iterative process proceeds. In this
equation, the vector pi represents the best value ever found for the ith component vector of
parameters Pi during the iterative process. Thus, the individuality term involves the
comparison between the current value of the ith individual Pi and its best value in the
past. The vector pg is the best value ever found for the entire population of parameters (not
only the ith individual). Thus, the sociability term compares Pi with the best value of the
entire population in the past.
Figure 10.16 shows the iterative procedure for the particle swarm method.
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FIGURE 10.16
Iterative procedure for the particle swarm method.
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10.4.4 Simulated Annealing

The simulated annealing method (Goffet et al., 1944 AQ7; Corana et al., 1987) is based on the
thermodynamics of the cooling of a material from a liquid to a solid phase. If a liquid
material (e.g., liquid metal) is slowly cooled and left for a sufficiently long time close to the
phase change temperature, a perfect crystal will be created, which has the lowest internal
energy state.
On the other hand, if the liquid material is not left for a sufficient long time close to the

phase change temperature, or, if the cooling process is not sufficiently slow, the final crystal
will have several defects and a high internal energy state. This phenomena is similar to the
quenching process used in metallurgical applications.
The gradient-based methods move in directions that successively lower the objective

function value when minimizing the value of a certain function or in directions that
successively raise the objective function value in the process of finding the maximum
value of a certain function. The simulated annealing method can move in any direction
at any point in the optimization process, thus escaping from possible local minimum or
local maximum values.
We can say that gradient-based methods ‘‘cool down too fast,’’ going rapidly to an

optimum location which, in most cases, is not the global, but a local one. As opposed to
gradient-based methods, nature works in a different way. Consider, for example, the
Boltzmann probability function given as

Prob(E) / e(�E=KT) (10:36)

This equation expresses the idea that a system in thermal equilibrium has its energy
distributed probabilistically among different energy states E, where K is the Boltzmann
constant. Equation 10.36 tells us that even at low temperatures, there is a chance, although
small, that the system is at a high energy level, as illustrated in Figure 10.17. Thus, there is a
chance that the system could get out of this local minimum and continue looking for
another one, possibly the global minimum.
Figure 10.18 shows the iterative procedure for the simulated annealing method. The

procedure starts generating a population of individuals of the same size as the number of
variables (n¼m), in such a way that the population matrix is a square matrix. Then, the
initial temperature (T), the reducing ratio (RT), the number of cycles (Ns), and the number
of iterations of the annealing process (Nit) are selected. After Ns*n function evaluations, each
element of the step length V is adjusted so that approximately half of all function evalu-
ations are accepted. The suggested value for the number of cycles is 20. After Nit*Ns*n

FIGURE 10.17
Schematic representation of Equation 10.36.E/KT
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function evaluations, the temperature (T) is changed by the factor RT. The value suggested
for the number of iterations by Corana et al. (1987) is MAX(100, 5*n).
The iterative process follows the equation

P1
i ¼ P0

i þ RVi (10:37)

Here, R is a random number with a uniform distribution between 0 and 1 and V is a step
size, which is continuously adjusted.
Initially, it randomly chooses a trial point within the step length V (a vector of length n)

of the user-selected starting point. The function is evaluated at this trial point P1
i

� �
and its

value is compared to its value at the initial point P0
i

� �
. In a minimization problem, all

downhill moves are accepted and the algorithm continues from that trial point. Uphill
moves may also be accepted; the decision is made by the Metropolis (Corana et al., 1987)
criteria. It uses T (temperature) and the size of the downhill move in a probabilistic manner

P ¼ e S P1
ið Þ�S P0

ið Þ½ �=T (10:38)

The smaller T and the size of the uphill move are, the more likely that move will be
accepted. If the trial is accepted, the algorithm moves on from that point. If it is rejected,
another point is chosen for a trial evaluation.
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FIGURE 10.18
Iterative procedure for the simulated annealing method.
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Each element of V is periodically adjusted, so that half of all function evaluations in that
direction are accepted. The number of accepted function evaluations is represented by the
variable Ni. Thus, the variable r represents the ratio of accepted over total function
evaluations for an entire cycle Ns and it is used to adjust the step length V.
A decrease in T is imposed upon the system with the RT variable by using

T(iþ 1) ¼ RT*T(i) (10:39)

where i is the ith iteration. Thus, as T declines, uphill moves are less likely to be accepted
and the percentage of rejections rises. Given the scheme for the selection for V, V falls.
Thus, as T declines, V falls and simulated annealing focuses upon the most promising area
for optimization.
The parameter T is crucial in using simulated annealing successfully. It influences V, the

step length over which the algorithm searches for optima. For a small initial T, the step
length may be too small; thus not enough function evaluations will be performed to find
the global optima. To determine the starting temperature that is consistent with optimizing
a function, it is worthwhile to run a trial run first. The user should set RT¼ 1.5 and T¼ 1.0.
With RT> 1.0, the temperature increases and V rises as well. Then, the value of T must be
selected, which produces a large enough V.

10.5 Hybrid Optimization Methods

The hybrid optimization methods (Dulikravich et al., 1999, 2003, 2004, 2008; Colaço and
Orlande, 2001a,b; Colaço et al., 2004, 2005, 2006, 2008; Colaço and Dulikravich, 2006, 2007;
Dulikravich and Colaço, 2006; Wellele et al., 2006; Silva et al., 2007; Padilha et al., 2009) are
not more than a combination of the deterministic and the evolutionary=stochastic methods,
in the sense that they try to use the advantages of each of these methods. The hybrid
optimization method usually employs an evolutionary=stochastic method to locate a
region where the global extreme point is located and then automatically switches to a
deterministic method to get to the exact point faster (Dulikravich et al., 1999).
One of the possible hybrid optimization methods encountered in the literature (Dulikra-

vich et al., 1999, 2003, 2004, 2008; Colaço and Orlande, 2001a,b; Colaço et al., 2004, 2005,
2006, 2008; Colaço and Dulikravich, 2006, 2007; Dulikravich and Colaço, 2006; Wellele
et al., 2006; Silva et al., 2007; Padilha et al., 2009), called in this chapter H1, is illustrated in
Figure 10.19 (Colaço et al., 2005). The driven module is very often the particle swarm
method, which performs most of the optimization task. When a certain percent of the
particles find a minima (let us say, some birds already found their best nesting place), the
algorithm switches automatically to the differential evolution method and the particles
(birds) are forced to breed. If there is an improvement in the objective function, the
algorithm returns to the particle swarm method, meaning that some other region is more
prone to having a global minimum. If there is no improvement on the objective function,
this can indicate that this region already contains the global value expected and the
algorithm automatically switches to the BFGS method in order to find its location more
precisely. In Figure 10.16 AQ8, the algorithm returns to the particle swarm method in order to
check if there are no changes in this location and the entire procedure repeats itself. After
some maximum number of iterations is performed (e.g., five), the process stops.
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In the particle swarm method, the probability test of the simulated annealing is per-
formed in order to allow the particles (birds) to escape from local minima, although this
procedure most often does not make any noticeable improvement in the method.

10.6 Response Surfaces

From the viewpoint of kernel interpolation=approximation techniques, many response
surface methods are based on linear and nonlinear regression and other variants of the
least square technique. This group of mesh-free methods has been successfully applied to
many practical, but difficult, problems in engineering that are to be solved by the trad-
itional mesh-based methods.
One of the most popular mesh-free kernel approximation techniques is the one that uses

radial basis functions (RBFs). Initially, RBFs were developed for multivariate data and
function interpolation. It was found that RBFs were able to construct an interpolation
scheme with favorable properties such as high efficiency, good quality, and capability of
dealing with scattered data, especially for higher dimension problems. A convincing
comparison (Colaço et al., 2007) of an RBF-based response surface method and a wave-
let-based artificial neural network method (Sahoo and Dulikravich, 2006) demonstrated
superiority of RBF-based methods especially for high-dimensionality response surfaces.
The use of RBFs followed by collocation, a technique first proposed by Kansa (1990),

after the work of Hardy (1991) on multivariate approximation, is now becoming an
established approach. Various applications to problems in mechanics have been made in
recent years—see, for example Leitão (2001, 2004).
Kansa’s method (or asymmetric collocation) starts by building an approximation to the

field of interest (normally displacement components) from the superposition of RBFs
(globally or compactly supported) conveniently placed at points in the domain and=or at
the boundary.
The unknowns (which are the coefficients of each RBF) are obtained from the approximate

enforcement of the boundary conditions as well as the governing equations by means of
collocation. Usually, this approximation only considers regular RBFs, such as the globally
supportedmultiquadricsor thecompactly supportedWendlandfunctions (Wendland,1998).

Particle swarm 
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probability

Differential 
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m% of the particles found a minima
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BFGS 
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FIGURE 10.19
Global procedure for the hybrid optimization method H1.
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There are several other methods for automatically constructing multidimensional
response surfaces. Notably, a classical book by Lancaster and Salkauskas (1986) offers a
variety of methods for fitting hypersurfaces of a relatively small dimensionality. Kauffman
et al. (1996) obtained reasonably accurate fits of data by using second-order polynomials.
Ivakhnenko and his team in Ukraine (Madala and Ivakhnenko, 1994) have published an
exceptionally robust method for fitting non-smooth data points in multidimensional
spaces. Their method is based on a self-assembly approach where the analytical description
of a hypersurface is a multilevel graph of the type ‘‘polynomial-of-a-polynomial-of-a-
polynomial-of-a- . . . ’’ and the basis functions are very simple polynomials (Moral and
Dulikravich, 2008). This approach has been used in indirect optimization based upon
self-organization (IOSO) (IOSO, 2003) commercial optimization software that has been
known for its extraordinary speed and robustness.

10.6.1 RBF Model Used in This Chapter

Let us suppose that we have a function of L variables Pi, i¼ 1, . . . , L. The RBF model used in
this work has the following form:

S(P) ffi j(P) ¼
XN
j¼1

ajf(jP� Pjj)þ
XM
k¼1

XL
i¼1

bi, kqk(Pi)þ b0 (10:40)

where
P¼P1, . . . ,Pi, . . . ,PL)
S(P) is known for a series of points P

Here, qk(Pi) is one of the M terms of a given basis of polynomials (Buhmann, 2003). This
approximation AQ9j(P) is solved for the aj and bi,k unknowns from the system of N linear
equations, subject

XN
j¼1

ajqk(P1) ¼ 0

..

.

XN
j¼1

ajqk(PL) ¼ 0

(10:41)

XN
j¼1

aj ¼ 0 (10:42)

In this chapter, the polynomial part of Equation 10.40 was taken as

qk(Pi) ¼ Pk
i (10:43)

and the RBFs are selected among the following:

Multiquadrics: f(jPi � Pjj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pi � Pj)

2 þ c2j
q

(10:44a)

Gaussian: f(jPi � Pjj) ¼ exp �c2j (Pi � Pj)2
h i

(10:44b)
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Squared multiquadrics: f(jPi � Pjj) ¼ (Pi � Pj)2 þ c2j (10:44c)

Cubical multiquadrics: f(jPi � Pjj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pi � Pj)2 þ c2j

qh i3
(10:44d)

with the shape parameter cj kept constant as 1=N. The shape parameter is used to control
the smoothness of the RBF. Figure 10.20 shows the influence on its choice for the multi-
quadrics RBF. From Equation 10.40, one can notice that a polynomial of order M is added
to the RBF.Mwas limited to an upper value of 6. After inspecting Equations 10.40 through
10.43, one can easily check that the final linear system has [(NþM*L)þ 1] equations. Some
tests were made using the cross product polynomials (Pi Pj Pk . . . ), but the improvements of
the results were irrelevant. Also, other types of RBFs were used, but no improvement of the
interpolation was observed.
The choice of which polynomial order and which RBF are the best to a specific function,

was made based on a cross-validation procedure. Let us suppose that we haveNTR training
points, which are the locations on the multidimensional space where the values of the
function are known. Such set of training points is equally subdivided into two subsets of
points, namedNTR1 andNTR2. Equations 10.40 through 10.42 are solved for a polynomial of
order zero and for the RBF expression given by Equations 10.44 using the subset NTR1.
Then, the value of the interpolated function is checked against the known value of the
function for the subset NTR2 and the error is recorded as

RMSNTR1,M¼0,RBF1 ¼
XNTR2

i¼1

[S(Pi)� j(Pi)]2 (10:45)

Then, the same procedure is made, using the subset NTR2 to solve Equations 10.40 through
10.42 and the subset NTR1 to calculate the error as

RMSNTR2,M¼0,RBF1 ¼
XNTR1

i¼1

[S(Pi)� j(Pi)]2 (10:46)

FIGURE 10.20
Influence of the shape parameter.
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Finally, the total error for the polynomial of order zero and the RBF expression given by
Equations 10.44 is obtained as

RMSM¼0,RBF1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSNTR1,M¼0,RBF1 þ RMSNTR2,M¼0,RBF1

p
(10:47)

This procedure is repeated for all polynomial orders, up to M¼ 6 and for each one of the
RBF expressions given by Equations 10.44. The best combination is the one that returns the
lowest value of the RMS error. Although this cross-validation procedure is quite simple, it
worked very well for all test cases analyzed in this chapter.

10.6.2 Performance Measurements

In accordance with having multiple metamodeling criteria, the performance of each meta-
modeling technique is measured from the following aspects (Jin et al., 2000):

. Accuracy—The capability of predicting the system response over the design space
of interest.

. Robustness—The capability of achieving good accuracy for different problem
types and sample sizes.

. Efficiency—The computational effort required for constructing the metamodel and
for predicting the response for a set of new points by metamodels.

. Transparency—The capability of illustrating explicit relationships between input
variables and responses.

. Conceptual simplicity—Ease of implementation. Simple methods should require
minimum user input and be easily adapted to each problem.

For accuracy, the goodness of fit obtained from ‘‘training’’ data is not sufficient to
assess the accuracy of newly predicted points. For this reason, additional confirmation
samples are used to verify the accuracy of the metamodels. To provide a more complete
picture of metamodel accuracy, three different metrics are used: R square (R2), relative
average absolute error (RAAE), and relative maximum absolute error (RMAE) (Jin et al.,
2000).

10.6.2.1 R Square

R2 ¼ 1�
Pn

i¼1 (yi � ŷi)
2Pn

i¼1 (yi � �y)2
¼ 1� MSE

variance
(10:48)

where
ŷi is the corresponding predicted value for the observed value yi
�y is the mean of the observed values

While mean square error (MSE) represents the departure of the metamodel from the real
simulation model, the variance captures how irregular the problem is. The larger the value
of R2, the more accurate the metamodel.
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10.6.2.2 Relative Average Absolute Error

RAAE ¼
Pn

i¼1 jyi � ŷi k
n*STD

(10:49)

where STD stands for standard deviation. The smaller the value of RAAE, the more
accurate the metamodel.

10.6.2.3 Relative Maximum Absolute Error

RMAE ¼ max (jy1 � ŷ1j, jy2 � ŷ2j, . . . , jyn � ŷnj)
STD

(10:50)

Large RMAE indicates large error in one region of the design space even though the overall
accuracy indicated by R2 and RAAE can be very good. Therefore, a small RMAE is
preferred. However, since this metric cannot show the overall performance in the design
space, it is not as important as R2 and RAAE.
Although the R2, RAAE, and RMAE are useful to ascertain the accuracy of the interpol-

ation, they can fail in some cases. For the R2 metric, for example, if one of the testing points
has a huge deviation of the exact value, such discrepancy might affect the entire sum
appearing on Equation 10.48 and, even if all the other testing points are accurately
interpolated. Similarly, the R2 result can be very bad. For this reason, we also calculate
the percentage deviation of the exact value of each testing point. Such deviations are
collected according to six ranges of errors: 0%–10%; 10%–20%; 20%–50%; 50%–100%;
100%–200%; >200%. Thus, an interpolation that has all testing points within the interval
of 0%–10% of relative error might be considered good in comparison to another one where
the points are all spread along the intervals from 10% to 200%.

10.6.3 Response Surface Test Cases

In order to show the accuracy of the RBF model presented, 296 test cases were used,
representing linear and nonlinear problems with up to 100 variables. Such problems were
selected from a collection of 395 problems (actually 296 test cases), proposed by Hock and
Schittkowski (1981) and Schittkowski (1987). Figure 10.21 shows the number of variables of
each one of the problems. Note that there are 395 problems, but some of them were not
used.
Three methodologies were used to solve the linear algebraic system resulting from

Equations 10.40 through 10.42: LU decomposition, SVD, and the generalized minimum
residual (GMRES) iterative solver. When the number of equations was small (less than 40),
the LU solver was used. However, when the number of variables increased over 40, the
resulting matrix becomes too ill-conditioned and the SVD solver had to be used. For more
than 80 variables, the SVD solver became too slow. Thus, the GMRES iterative method
with the Jacobi preconditioner was used for all test cases.
In order to verify the accuracy of the interpolation over a different number of training

points, three sets were defined. Also, the number of testing points varied, according to the
number of training points. Table 10.1 presents these three sets, based on the number of
dimensions (variables) L of the problem.
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Figure 10.22 shows the R2 metric for all test cases, using the scarce set of training points.
It can be noticed that the results are all spread from 0 (completely inadequate interpolation)
to 1 (very accurate interpolation). However, even for this very small number of training
points, most cases have an excellent interpolation, with R2¼ 1.
Figure 10.23 shows the CPU time required to interpolate each test function, using the

scarce set of training points. For most of the cases, the CPU time was less than 1 s, using
an AMD Opteron 1.6 GHz processor and 1GB registered ECC DDR PC-2700 RAM. In fact,
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FIGURE 10.21
Number of variables for each problem considered.

TABLE 10.1

Number of Training and Testing Points

Number of
Training Points

Number of
Testing Points

Scarce set 3L 300L

Small set 10L 1000L
Medium set 50L 5000L
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FIGURE 10.22
R2 metric for the scarce set of training points.
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the highest dimensional test cases, which had 100 variables, required only 100 s to
be interpolated.
Although the R2 might indicate some performance behavior of the interpolation function,

we decided to use a different measure of accuracy. Figure 10.24 shows the percentage of
testing points having errors less than 10%, against the percentage of all 296 test cases, for
the scarce set of testing points. Thus, from this figure, it can be noticed that for more than
40% of all test functions, the relative errors were less than 10%. This is a very good result,
considering the extremely small number of training points used in the scarce set.
Figure 10.25 shows the R2 metric for the small set of training points. Compared to Figure

10.22, it can be seen that the points move toward the value of R2¼ 1.0, showing that the
accuracy of the interpolation gets better when the number of training points increase.
Figure 10.26 shows the CPU time required for all test cases, when the small number of

training points is used. Although the test case with 100 variables requires almost 1000 s, in
almost all test cases, the CPU time is low.
Figure 10.27 shows the percentage of points having errors lower than 10%. Comparing

with Figure 10.24, one can see that increasing the number of training points from 3 L
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FIGURE 10.23
CPU time for the scarce set of training points.
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FIGURE 10.24
Testing points with less than 10% error, for the scarce set of training points.

Orlande/Thermal Measurements and Inverse Techniques K12031_C010 Page Proof page 388 21.12.2010 4:57am Compositor Name: PG1421

388 Thermal Measurements and Inverse Techniques



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450
Test problem (small set)

R2

FIGURE 10.25
R2 metric for the small set of training points.
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FIGURE 10.26
CPU time for the small set of training points.
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FIGURE 10.27
Testing points with less than 10% error, for the small set of training points.

Orlande/Thermal Measurements and Inverse Techniques K12031_C010 Page Proof page 389 21.12.2010 4:57am Compositor Name: PG1421

A Survey of Basic Deterministic, Heuristic, and Hybrid Methods 389



(scarce set) to 10 L (small set), the number of testing points having less than 10% of relative
error for all 296 test cases increase from approximately 45% to approximately 55%,
showing a very good interpolation, even for a not so large number of training points.
Finally, Figures 10.28 through 10.30 show the results when a medium set of training

points are used.
From Figure 10.28, one can notice that the majority of the test cases have the R2 metric

close to 1.0, indicating a very good interpolation, for a not so large CPU time, as it can be
verified at Figure 10.29. From Figure 10.30, the number of testing points having errors less
than 10% for all 296 test cases increases to approximately 75% when a medium (50 L)
number of training points is used. This indicates that such interpolation can be used as a
metamodel in an optimization task, where the objective function takes too long to be
calculated. Thus, instead of optimizing the original function, an interpolation can be
used, significantly reducing the computational time.
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FIGURE 10.28
R2 metric for the medium set of training points.
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FIGURE 10.29
CPU time for the medium set of training points.
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10.7 Hybrid Methods with Response Surfaces and Examples

Once the response surface methodology and the hybrid optimizer idea were presented, we
will combine both of the sections. This method, called hybrid optimizer H2 (Colaço and
Dulikravich, 2007), is quite similar to the H1 presented in Section 10.5, except for the fact
that it uses a response surface method at some point of the optimization task. The global
procedure is illustrated in Figure 10.31. It can be seen from this figure that after a certain
number of objective functions were calculated, all this information was used to obtain a
response surface. Such a response surface is then optimized using the same proposed
hybrid code defined in the H1 optimizer so that it fits the calculated values of the objective

FIGURE 10.31
Global procedure for the hybrid opti-
mization method H2.
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function as closely as possible. New values of the objective function are then obtained very
cheaply by interpolating their values from the response surface.
In Figure 10.31, if the BFGS cannot find any better solution, the algorithm uses an RBF

interpolation scheme to obtain a response surface and then optimizes such response
surface using the same hybrid algorithm proposed. When the minimum value of this
response surface is found, the algorithm checks to see if it is also a solution of the original
problem. Then, if there is no improvement of the objective function, the entire population is
eliminated and a new population is generated around the best value obtained so far. The
algorithm returns to the particle swarm method in order to check if there are no changes in
this location and the entire procedure repeats itself. After a specified maximum number of
iterations is performed (e.g., five), the process stops.
An even more efficient algorithm, which will be calledH3, is an extension of the previous

ones. The global procedure is enumerated in the following:

1. Generate an initial population, using the real function (not the interpolated one)
f(P). Call this population Preal.

2. Determine the individual that has the minimum value of the objective function,
over the entire population Preal and call this individual Pbest.

3. Determine the individual that is more distant from the Pbest, over the entire
population Preal. Call this individual Pfar.

4. Generate a response surface, with the methodology at Section 10.6, using the entire
population Preal as training points. Call this function g(P).

5. Optimize the interpolated function g(P) using the hybrid optimizer H1, defined in
Section 10.5, and call the optimum variable of the interpolated function as Pint.
During the generation of the internal population to be used in the H1 optimizer,
consider the upper and lower bounds limits as the minimum and maximum values
of the population Preal in order to not extrapolate the response surface.

6. If the real objective function f(Pint) is better than all objective functions of the
population Preal, replace Pfar by Pint. Otherwise, generate a new individual,
using the Sobol’s pseudorandom number sequence generator (Sobol and Levitan,
1976) within the upper and lower bounds of the variables, and replace Pfar by this
new individual.

7. If the optimum is achieved, stop the procedure. Otherwise, return to step 2.

From the sequence above, one can notice that the number of times that the real objective
function f(P) is called is very small. Also, from step 6, one can see that the space of search is
reduced at each iteration. When the response surface g(P) is no longer capable to find a
minimum, anewcall to the real function f(P) ismade to generate a newpoint to be included in
the interpolation. Since the CPU time to calculate the interpolated function is very small, the
maximum number of iterations of the H1 optimizer can be very large (e.g., 1000 iterations).
The hybrid optimizer H3was compared against the optimizerH1, H2, and the commercial

code IOSO2.0 for some standard test functions. Thefirst test functionwas the Levy#9 function
(Sandgren, 1977), which has 625 local minima and 4 variables. Such function is defined as

S(P) ¼ sin2 (p� z1)þ
Xn�1

i¼1

(zi � 1)2 1 ¼ 10 sin2 (p ziþ1)
	 
þ (z4 � 1)2 (10:51)
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where

zi ¼ 1þ Pi � 1
4

(i ¼ 1, 4) (10:52)

The function is defined within the interval �10 � P � 10 and its minimum is S(P)¼ 0 for
P¼ 1. Figure 10.32 shows the optimization history of the IOSO, H1, H2, and H3 optimizers.
Since the H1, H2, and H3 optimizers are based on random number generators (because the
particle swarm module), we present the best and worst estimatives for these three optimi-
zers.
From Figure 10.32, it can be seen that the performance of the H3 optimizer is very close to

the IOSO commercial code. The H1 code is the worst and the H2 optimizer also has a
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Optimization history of the Levy #9 function for the (a) IOSO, (b) H1-best, (c) H2-best,
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reasonably good performance. It is interesting to note that the H1 code is the only one that
does not have a response surface model implemented.
The second function tested was the Griewank function (Sandgren, 1977), which is

defined as

S(P) ¼
Xn
i¼1

P2
i

4000
�
Yn
i�1

cos
Piffiffi
i

p
� �

þ 1; Pi 2 ]�600, 600[ (i ¼ 1, 2) (10:53)

The global minima for this function is located at P¼ 0 and is S(P)¼ 0. This function has an
extremely large number of local minima, making the optimization task quite difficult.
Figure 10.33 shows the optimization history of the IOSO, H1, H2, and H3 optimizers.

Again, the best and worst results for H1, H2, and H3 are presented.
From this figure, it is clear that the H1, H2, and H3 optimizers are much better than the

IOSO commercial code. The H1 code was the best, while the H2 sometimes stopped at
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FIGURE 10.32 (continued)
(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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some local minima. The worst result of the H3 optimizer was, however, better than the
result obtained by IOSO. It is worth pointing out that, with more iterations, the H3 code
could reach the minimum of the objective function, even for the worst result.
The next test function implemented was the Rosenbrook function (More et al., 1981),

which is defined as

S(P1,P2) ¼ 100 P2 � P2
1

� �2 þ (1� P1)2 (10:54)

The function is defined within the interval �10 � P � 10 and its minimum is S(P)¼ 0 for
P¼ 1. Figure 10.34 shows the optimization history of the IOSO, H1, H2, and H3 optimizers.
For this function, which is almost flat close to the global minima, the IOSO code was the

one with the best performance, followed by the H3 optimizer. The H2 performed very
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(continued)

Orlande/Thermal Measurements and Inverse Techniques K12031_C010 Page Proof page 395 21.12.2010 4:57am Compositor Name: PG1421

A Survey of Basic Deterministic, Heuristic, and Hybrid Methods 395



inadequately and the H1 was able to get close to the minimum, but with a huge number
of objective function calculations. When looking at the H3 results, the final value of the
objective function differed by some orders of magnitude. However, the optimum
solution obtained with this new optimizer was P1¼ 0.9996 and P2¼ 0.9992, while the
IOSO obtained P1¼ 1.0000 and P2¼ 1.0000. Thus, the relative error among the variables
was less than 0.01%, indicating that despite the discrepancy among the final value of
the objective function, the H3 code was able to recover the value of the optimum
variables with a neglectable relative error.
The last test function analyzed was the Mielle–Cantrel function (Miele and Cantrell,

1969), which is defined as

S(P) ¼ exp(P1�P2)
	 
4 þ 100(P2 � P3)6 þ arctan4 (P3 � P4)þ P2

1 (10:55)

Number of function evaluations

1.0E–15
1.0E–14
1.0E–13
1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

1.0E+2
1.0E+1

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

(d) Number of function evaluations

1.0E–15
1.0E–14
1.0E–13
1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

1.0E+2
1.0E+1

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

Number of function evaluations

1.0E–15
1.0E–14
1.0E–13
1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

1.0E+2
1.0E+1

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

0 40 80 120 200160 0 100 200 300

0 1000 2000 3000 50004000 0 200 400 600 800
Number of function evaluations

1.0E–15
1.0E–14
1.0E–13
1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

1.0E+2
1.0E+1

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

(e)

(f ) (g)

FIGURE 10.33 (continued)
(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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The function is defined within the interval �10 � P � 10 and its minimum is S(P)¼ 0
for P1¼ 0 and P2¼P3¼P4¼ 1. Figure 10.35 shows the optimization history of the IOSO,
H1, H2, and H3 optimizers. Again, the best and worst results for H1, H2, and H3 are
presented.
For this function, the IOSO code was the best, followed by the H3. The H2 code

performed very inadequately again. The H1 was able to get to the global minimum after
a huge number of objective function calculations. As occurred with the Rosenbrook
function, in spite of the fact that H3 results for the objective function differ from the
IOSO code, the final values of the variables were P1¼ 4.0981� 10�8, P2¼ 0.9864,
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Optimization history of the Rosenbrook function for the (a) IOSO, (b) H1-best, (c) H2-best,
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P3¼ 0.9688, and P4¼ 0.9626 for the H3 optimizer and P1¼�0.1216� 10�5, P2¼ 1.002,
P3¼ 0.9957, and P4¼ 0.9962 for the IOSO code.

10.8 Conclusion

In this chapter, we presented some basic concepts related to deterministic and heuristic
methods, applied to single-objective optimization. Three different hybrid methods were
also presented, as well as a powerful response surface methodology. The combination of
the techniques presented here can be used in very complex engineering problems, which
demand thousands of objective function calculations.
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FIGURE 10.34 (continued)
(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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Nomenclature

A approximation of the Hessian
CR crossover constant
d direction of descent
E energy state
F weight constant which defines the mutation
G equality constraint
H approximation for the inverse of the Hessian
I uncertainty interval
I identity matrix
J matrix composed by the diagonal elements of A
k counter for the number of iterations
K Boltzmann constant
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FIGURE 10.35 (continued)
(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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M,N auxiliary matrices for the quasi-Newton methods
N number of parameters (variables)
P vector of parameters (variables) of the objective function S
q iteration number for the restraint strategy in the Conjugate Gradient Method
Q inequality constraint
r1, r2 random number vectors
S objective function
T temperature
Y auxiliary vector for the quasi-Newton methods

Greeks

a search step size
a,b,g vectors of parameters used in the differential evolution method
d delta Dirac function
g,c conjugation coefficients
l auxiliary parameter for the Levenberg-Marquardt method
pI best value of some individual
pg best value of the population
P population matrix
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