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Three-dimensional, steady, inviscid, compressible, isoenergetic, rotational flows can be completely
described by two families of stream functions. In the present study, explicit forms of the governing
equations for these two stream functions of baratropic fluid flows are derived. With the assumptions of
two-dimensional or axisymmetric, incompressible and/or irrotational flows, this formulation can be
reduced to the familiar special cases.

The concept of stream-function-coordinate (SFC) is introduced along with some relevant examples.

1. Introduction

The velocity potential function and stream functions are commonly employed to reduce the
number of unknowns in the calculation of fluid flow problems. Both approaches suffer the
penalty of increasing the order of the original governing partial differential equations.
Furthermore, the introduction of a velocity potential function is based on the assumption of an
irrotational flow. However, the stream function formulation is suitable for rotational fiow
calculations.

The earliest work involving a stream function formulation can be traced back to 1781, when
Lagrange (1] introduced the stream function for two-dimensional planar incompressible flows.
The stream function for incompressible axisymmetric flows was found by Stokes [2] in 1842.
Yih [3] pointed out that both methods used to find the stream functions are based on strictly
mathematical considerations without any connection to flow kinematics. It was in 1951 that
Giese [4] proposed that steady, inviscid, three-dimensional, rotational flows can be described
by two families of stream functions. By properly choosing the formulation for the second
stream function, Giese proved that the stream functions introduced by Lagrange and Stokes
are only special cases of the first stream function that he defined.

The physical meaning [4] of these two families of stream functions is that each of the two
stream functions corresponds to a family of stream surfaces. The intersection contour of these
two stream surfaces represents a streamline. The mass flux through a stream tube bounded by
two pairs of stream surfaces can be expressed as the product of the differences of these two
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stream functions. Giese also verified a variational principle for three-dimensional steady
compressible flows by using the concept of two stream functions.

In 1957, Yih [3] mathematically proved the existence of two stream functions for three-
dimensional steady flows by means of flow kinematics and verified the results obtained by
Giese. Moreover, Yih extended his mathematical approach to unsteady flows and concluded
that for three-dimensional unsteady compressible flows three separate path functions exist.
Each of these three path functions corresponds to a family of material surfaces. Velocity
components and the mass contained in a material volume bounded by three material surfaces

stream line, Yih asserted that two vorticity functions can be applied equally well to describe
the vortex motion.

Even though Giese and Yih applied different approaches to find stream functions for
three-dimensional flows, they did not provide any examples to emphasize their mathematical
results. In 1963, Benton [5], following Yih’s idea, mathematically designed a potential flow
consisting of a single three-dimensional quadrupole with two orthogonal axes and found the
explicit form for two stream functions describing such a flow.

It should be pointed out that the assumption of an incompressible flow mathematically
uncouples the energy equation from both the continuity and momentum equations. In
addition, if the flow is assumed to be irrotational, the equation of continuity also becomes
uncoupled from the momentum equations, and the velocity field can be completely deter-
mined solely by using flow kinematics. One of the objectives of this study is to combine flow
kinematics and flow dynamics to find the governing equations of two stream functions
describing three-dimensional, steady, inviscid, compressible, isoenergetic, and rotational
flows.

The second objective is to introduce the stream-function-coordinate (SFC) formulation for
the purpose of solving a flow problem and simultaneously determining the flow pattern.
Basically, this concept represents a transformation of the stream function equations in such a
way that stream functions ¥ and A are treated as new independent variables, while y- and

solve this equation.

It is worth noting that this concept can be applied to both incompressible [6] and
compressible [7-10] flows. The third and most important objective of this paper is to clearly
€Xpose several essential problems involved with the SFC concept and with the use of stream
functions in general for fluid flow computations. Possible ways to resolve some of these
difficulties will also be discussed.

2. Exact stream function formulation

The momentum equations for steady, inviscid flows without body forces can be written in
vector operator form as

p[V§V-V—VxVxV]=—Vp, (1)
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where p is the local thermodynamic pressure, and V is the local fluid velocity vector. The
nondimensional mass flux vector u is defined as

u=pVip*a* (2)

where p*, a* denote the critical density and critical speed of sound, respectively, and they are
constant for isoenergetic flows. Let us define two scalar functions ¥ and A in such a way that

u=Vy x VA, (3)
It is seen that the equation of continuity in the absence of mass sources and sinks,

V-u=V/\-(VXV¢)—V¢-(VXV/\)EO, 4)
is identically satisfied using this formulation. This is the celebrated Clebsch transformation,
which is cited in [21,22] and has been applied with increasing frequency in recent years
[23-27], particularly in connection with studies of secondary flow in turbomachinery.

The vorticity vector w can be rewritten in terms of the nondimensional mass flux vector « as

w=VxV=p*a*[(V><u)/p+V(1/p)><u], (5)
Hence

VXu+uXxVlp=pwip*a* . (6)
For baratropic fluid flows, pressure is a function of density only, i.e.,

p=p(p). (M
The local speed of sound is defined as

a’= (ep/ap), . ‘ ' (8)
Thus, the momentum equation (1) can be expressed in terms of nondimensional mass flux u as

2(p*a*)'V(u-ulp®) = p*a*u X wip = ~Vplp = —(a’lp)Vp . 9)
Let us define a compressibility parameter k by

k2=(p"‘a"/pa)2 ) (10)
Then, (9) reduces to

—kzu-qu/p+k2V(%u-u)—ku><w/a=—Vp/p. (11)

Hence,
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Vplp = — 2 . (12)

Replacing Vp/p in (6) by equation (12), we have

+ kzuxV(%u-u) o+ Ku(w- )

VXxu 5 -
kK'u-u-—1 ka(k'u-u-1)

(13)
Substituting (3) into equation (11) resuits in
K*(Vir X VA) X T[4(Vy x VA) - (Vg x VA)]

k(Y X VA) - (Vi X WA) = 1

_ @+ (VY X V) - (Vi X VA)] (14)
ka[k* (Vg X VA) - (Vg x VA) = 1]

VX (Vg x VA) +

Note that (14) represents the explicit vector operator form of the flow governing equations
involving the stream function equations for three-dimensional, steady, inviscid, isoenergetic,
rotational flows. Since w =V X V and hence V- w = 0, (14) actually represents two indepen-
dent coupled scalar equations. Any two equations resulting from (14) can be used to solve for
Y and A.

For irrotational flows, (14) reduces to

2 1 .
V X (Vg x V) + k*(Vy >2< VA) X V[ (V¢ X VA)- (Vg X VA)] _o. (15)
K [(Vg X VA)- (Vg x VA)] - 1

Crocco’s theorem states that steady, homoenergetic, and irrotational flow must also be
homentropic. Thus, the compressibility parameter k can be written as

K =(pra*lpa)’ =[(y + 1) = §(y — YM*?] 0 10m0) (16)

where M* = |V|/a* is the characteristic or critical local Mach number. For two-dimensional
planar flows, the second stream function is A = z. Then. (14) becomes

(1= KD, + 250,00, + (1= KD, = o[k} + %)~ 1] /ka. (17)
For two-dimensional irrotational flows, (14) becomes
(1= k), + 2k 0, + (1 - Ky, =0. (18)

For two-dimensional incompressible flows k& = 0 and (14) reduces to

Ve T, = 0. (19)

For two-dimensional incompressible, irrotational flows k =0 and w =0, and (14) reduces to
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(/lxx + dl.y’\' = O * (20)

The complete forms of flow governing equations using the stream function formulation written
in terms of polar and cylindrical coordinates are given in Appendix A.

The best known application of the two-dimensional form of (14) in the precomputer era is
summarized in the research reports of Emmons [11-13]. He solved the stream function
equation for two-dimensional transonic flows by hand relaxation in which the shock was fitted.
In recent years, different versions of the transonic stream function equations for two-
dimensional and three-dimensional flows have been studied. Chin and Rizzeta [14] obtained
the small-perturbation version of the two-dimensional stream function equation that is
deduced from the transonic small-perturbation potential equation. They successfully applied it
to airfoil inverse design in subcritical and supercritical flows.

Since the conservative form of the two-dimensional stream function equation is very similar
to the potential equation, Hafez [15] and Lovell [16] applied the artificial compressibility
method, that has often been used for potential flow problems, to solve the transonic stream
function equation in conservation form for both irrotational and rotational flows. Their
computational results showed that inviscid separation is possible with the stream function
formulation for rotational transonic flows. The first successful numerical calculation of
three-dimensional transonic flows using two stream functions was performed by Sherif and
Hafez [17]. However, the two stream functions that they used to calculate three-dimensional
flows do not represent physical stream surfaces. Instead, they represent two components of a
generalized vector potential.

Since the stream function formulation is suitable for rotational flow problems, Atkins and
Hassan [18] considered the rotational effects due to the generation of vorticity behind a shock
wave. By applving the stream function formulation to the Fuler entatinne af oac dumamiec



vdiuatlion o € vorlcity. €y concluded that numerica

solutions of the Euler equations based on stream function formulations are accurate and
relatively inexpensive.

3. Stream-function-coordinate (SFC) concept

In recent years, the streamline and stream-function-coordinate (SFC) concept has been
applied in numerical calculations of several elementary flow problems. Table 1 summarizes
recent publications related to these applications. Among those, it should be pointed out that
only Pearson [9] formulated the problem for three-dimensional flows and only Breeze-
Stringfellow and Burggraf {6] worked with the physical stream function (axisymmetric
incompressible flows) and obtained the explicit form of the transformed equation.

In this section, the exact transformations of the three-dimensional stream function equations
will be derived [19]. It was mentioned earlier that two stream functions in three-dimensional
flows correspond to two families of stream surfaces. However, the body surface in a flow field
is a stream surface. Thus, the use of stream function coordinates will transform the body
surface from the physical domain into a strip (or line segment for two-dimensional flows) in
the transformed domain. It should be noted that the boundary conditions for the transformed
equations are highly simplified, thus numerical methods can be readily applied to solve the
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Table 1
Summary of recent publications utilizing SFC formulation
Researchers Applied coordinate Formulation of governing Applications
systems equations
R. Ishii 1980 (7, 8] Streamline & and 1. Continuity equation Subsonic and
orthogonal trajectory 2. lrrotationality supersonic axially
of streamline 8 3. Energy equation symmetric nozzle flow
4. Equation of state calculations
5. Kinematic relations
C.E. Pearson 1981 [9] x. a and B; a and 1. Continuity equation Subsonic jet
B are any two 2. Momentum equations flow with free
parameters that 3. Energy equation surface
can be used to 4. Equation of state
identify different 5. Kinematic relations
streamlines
A K. Singhal and x and stream function ¢ 1. Continuity equation Subsonic and
D.B. Spalding (two-dimensional flows) 2. Momentum equations transonic flows
1983 [10] 3. Equation of state in a cascade of
4. Kinematic relations turbine blade
A.Breeze-Stringfellow and x and stream function 1. Continuity equation Propeller and
O.R. Burggraf 1983 [6] (incompressible (Incompressible flow) nacelle interference
axisymmetric flows) 2. Irrotationality

transformed equations. Several example calculations are presented to demonstrate the appli-
cations.

Equation (14) contains combinations of first-order and second-order partial derivatives for

both ¢ and A. Thus, only the transformations for the first-order and the second-order partial
derivatives are needed.

For simplicity, we will consider a Cartesian coordinate system only. The transformations

using any other coordinate system can be obtained by a similar procedure. The old dependent
variables in the full stream function equations are

b=y(x,y,2), A=Ay, 2). (21)
The new dependent variables are
x=x(x, ¢, A),  y=y(x, ¢, 0), z=2z(x, ¢, A). (22)

We first assume that the functions x, y, and z are continuously differentiable with respect to
the new independent variables x, &, and A. Define

X, x, x,
UI=]y. Yo ¥ (23)
z, z, 2z,

as the Jacobian matrix of the transformation given by (22). Then
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‘]lzdet[‘llz.vdlz)\ T Xl (24)
1s the determinant of the Jacobian matrix.

The transformation of the first-order partial derivatives can be obtained from the inverse of
the Jacobian matrix as

17" =[A]/, .
where [A]' denotes the adjoint matrix of [J]. The elements in matrix [A] are equal to the

cofactors of the corresponding elements in matrix [J]. Therefore. the inverse of the Jacobian
matrix can be expressed as

X,ox,ox, 1 J, 0 0
A A (25)
Ao A, A Y-z,
where
Li=yezs=nzes h=yz,-yz,,  Ji=yz,-y,z,. (26)

The partial derivative of the identity matrix with respect to x gives that

(D=, =o0. (27)

After rearranging, it follows that

Xeo Xoy X (), () (),
Yoo by Y| ==U17 1), ) O | 7 == U1 (FIIT,
/\xx Ax_\' /\x: (zx)x (zn//)x (ZA ).\'

(28)

where [F] denotes the matrix involving mixed derivatives of new variables and old variables.
The elements of [F] can be determined by chain rule differentiation as follows:

(x,),=(x,),=(x,), =0,

(P =X Ty T AV =V ¥ (L)Y + (L)Y

ade =X Yur VY uu ¥ AYun = Yoo + ()Y g + (L) y,

(Ve =X Yty T AL =Ya (L)Y + ()Y, (29)
(z)e=xz, vz, + Az, =z, +(LU)z,, +(LU)z,,

(z,), =x 2, vz, t Az, =z, + L)z, +:0)z,, .

(ZA),r = x.l'ZA.l + (/va'zalw + A.rzAA = zx/\ + (‘]Z/Jl)zd;A + (‘]3/‘]1)2AA .

Therefore, (28) becomes
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0
.
A

xy

!

0
.
AXZ

[AT(FILA)/IT .

(30)

-

Similarly, by taking the partial derivative of the identity matrix with respect to y and z, we get

and

0 0]
Yoo U | = - [A)[G]A]'13
'\,V.\' A ]

0 0
U, U= - [Al'H][A]'V)]
A A,

zy zz J

)

(31)

(32)

where the matrices [G] and [H] are similar to [F] as follows:

[G]=

[H]=

[ (x,),
(¥.),
L(z,),
[ (xx).‘
(¥,):

. (ZX)Z

(x,),
(yo),
(z,),
(x,).
(¥u):
(z,).

(x,), ]
(¥2),
(z,), ]

(%), ]
(¥):

).

(33)

(34)

The elements in matrices [G] and [H] can be determined by the same method that was used to

determine matrix

[F]. The results are

(), =(xy)y = (x,), = (x,), = (x,), = (x,). =0,

7ﬂw—%n“ (z,), =
;fmw—jfxm, (z,), =
j Yo ;fyu, (z,), =
STt T e (@)=
—%yw+%yw, (z,)
—?Jw+¥nA (2,).

5 A
J) xy J] XA ?
(35)
z, 4 ,
—y ,
. G J GA
5o A
]] Yua ]] Yaas
Ya yw
—_ = +_....
J] xy ‘]] XA ?
Y Yo
=—71A'wa+'rzl“, (36)
Y Yy
= — .-]TA ‘_‘M"}‘ ‘j—l Z,,
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4. SFC formulation for two-dimensional flows
For two-dimensional planar flows. A = z and it follows that
bo=J0J ==y, Iy, . b=z, =1y, . (37)

The second-order partial derivatives ¢, ¢, ., and ¢, can be determined from (30) and (31).
The results are ' '

"//xx = (_l /y;)()'f,"mw - 2,".\ ywy.ru‘/ + yi—“u) M (38)
Uy = (1Y) (3, Ve = YoYea) - (39)
Yoy = = You /¥ - (40)

. Substituting (38)-(40) into equations (17)-(20). the SFC equations for different tyvpes of flow
are obtained.
For two-dimensional rotational compressible planar flows:

(Y2 = k)Y = 20,00V + (1 YD)y, = —o[K(1+ 30y, — vilika. (41)
For two-dimensional irrotational compressible planar flows:

(Yo = K )Yue = 20,00 Y + (14 ¥y, =0. (42)
For two-dimensional rotational incompressible planar flows:

YV~ 2V Yee T (1H YDy, = 0y (43)
For two-dimensional irrotational incompressible planar flows:

YiVa = 2V Yo T (1 + YD)y, =0. (44)

Nevertheless, at the points where the Jacobian vanishes or tends to infinity the transform-
ation is not unique. The Jacobian of the transformation is given by (24) as
J, =YeZa T N (45)
This expression provides no information about the location of those singular points. However,
(25) gives that

yd‘:JlA:’ ZAzjld/\vﬁ y)\z-jldjzv :d,=—-]1/\

(46)
Substituting into (24). it follows that

L=1/(A = v A) =11V, . (47)
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From (47) we can immediately conclude that the transformation fails at the points where
the x-component of the velocity vector equals zero or infinity. This means that the location of
singular points implicitly depends on the solution of the velocity field and explicitly on the
geometry of the boundaries of the flow domain.

In order to analyze the significance of this problem. a number of numerical computations
were performed, and the results were compared with analytic solutions. Problems arising from
the applications of the SFC concept are demonstrated by three examples of two-dimensional
flows:

(a) Steady. uniform incompressible flow through a cascade of doublets. The exact form [20]
of the stream function for this flow is given as

sin(my/H) :l ‘ (48)

Y= Ui[}’ = [(2H /) sinh*(mc/4H)] cosh(mx/H) — cos(my/H)

where ‘¢ is the chord length of the resulting oval shaped body in the cascade, and 2H is the
distance between the centers of the ovals. In this particular example, ¢ = 1.8366 and H = 2.0
were used.

(b) Steady incompressible potential flow around a corner. The exact form of the stream
function for this flow problem is

¢ =U_R" sin (nd) . (49)

(c) Compressible subsonic steady potential flow around a NACA 0012 airfoil in a channel.
The equation to be solved is the stream-function-coordinate equation:

(Y, = KHY, -2Y.Y, Y, +(1+ Y)Y, =0, (50)

where K =0 for incompressible flow problems. From the discriminant of this equation,

D=Y,(M*-1), (51)
Table 2
Computational efficiency
Exampies Convergence Gnid Execution time on

criteria size CDC 170/730

Incompressible potential 6s for uniform mesh
flow through a cascade § ., =10"" 91 x 11
of doublets 12's for nonuniform mesh
Incompressible potential
corner flow 8,0, =107° 65x11 45
Subsonic flow around 10s for M, =0.01
NACA 0012 airfoil 8., =107" 91 x 11
in a channel 44s for M, =0.65

with height/chord = 3.6




C.-Y. Huang. G.S. Dulikravich. Stream-function-coordinate formulation

165

we can immediately conclude that the type of the original stream function equation is

preserved in both compressible and incompressible flow situations.

Numerical discretization of the governing SFC equations was performed using central
differences to formulate the finite difference equations. Let subscripts i and j denote the ith
node along the x-axis and the j-th streamline. respectively. then the following finite difference

forms are obtained:

Y - Yl+l.]—- Yl'].[ =A
Y (Ax, t+ Ax, ) ’
Y, . =Y,

Y _ i+t NS B,

©T @y, AU,

2lY Ax, | =Y, (Ax,+Ax,_ )+ Y, Ax]

1+ li =1,y b

“ Ax; Ax,_ (Ax, + Ax,_))

Initial guesses for
a. Y1 (IncoTpr‘essible flows)
b. Y. | and Mij (Compressible flows)
L

IIJ

update the value of Yi 3 calculate
’ o e o e— ey
by SOR method As(yx)i,j and Bg(yw>i,j
!
i
*
calculate total error update Mi j by
- 1+A Y+l -1 *¥7.Y -1
§=1 zlygnj”-Yi”?[ Lot
i1y b - 3

check if § § émax

}-— Yes ——-{ STOP

No

GO TO (A)

Fig. 1. Iterative algorithm flow chart.

(52)

(53)

(54)
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2[)’LI‘] Aw/”l - Yl.[(Ad/l + Ad/,_])"' }"l.l'| A"/’/]

Y, = 55
P AW,AL///_I(A(//]‘FAUI,_,) ( )
qu - Y:’l./‘l _(Yl'l./‘l + Yl—l_f‘])-*- Y:-l./-l -C. (56)
’ (Ax;, + Ax,_, JAY, + Ad,_ )
where. in general. Af, =, — f. Substituting (52)-(56) into equation (50) and rearranging
the terms. we obtain the finite difference equation for steady potential flows
vy = [(B: -~ K:) . (1+ A:) ;I_][(B: - K:)(Y,H_, Ax,_, + Y, Ax)
- Ax, Ax,_, Ay Ay, Ax, Ax,_(Ax; + Ax,_))
(L+ A)Y, . Ay + Y Ay
+ e A 2 Y AY) —ABC] (57)
AY Ay, Ay + Ay, )

Equation (57) was solved iteratively using the method of successive overrelaxations.
The iterative algorithm flow chart is schematically represented in Fig. 1. where the dashed
lines indicate the steps used for compressible flow computations.

S. Numerical results

Figures 2-5 show the numerical results and the normalized error distribution for a uniform
incompressible steady flow past a cascade of doublets. As was mentioned earlier, the analytic
transformation used in the SFC formulation fails at the points where the x-component of the
velocity vector equals zero. This results in a locally large numerical error. The error
distribution also shows that this error is localized in the region near the singular point. Several

FLOW PATTERN, NOD= 2
DASHEDLINE : NUMERICAL SOLUTION
SOLID LINE : EXACT SOLUTION

ol

CLd -
0.00~ T I i 1 | { L

~4.00 -3.50 -3.00 -2.50 ~2.00 ~1.50 —1.00 -0.50 0.00
X~COORDINATE
"

Fig. 2. Exact and numerical solutions of a uniform flow through a cascade of doublets: Uniform grid.
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ERROR IN Y=(YE-YN)/DY, NOD= 2
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Fig. 5. Normalized error distribution: Nonuniform grid.

different strategies for clustering of the grid about the singular point were attempted.
However, the error persisted as shown in Fig. 5.

Figures 6 and 7 show that, in the case of a uniform flow past a concave corner, the
numerical error is significantly reduced with the decrease of the angle of the corner. It should
be pointed out that numerical solutions for the shape of streamlines are usually so close to the
analytic solutions that this visual effect often misleads one to believe that the computations are
correct. High-accuracy results could be expected only if a body has a cusped leading edge with
the cusp centerline perfectly aligned with a streamline. Nevertheless, the streamline shapes are
not known a priori, and the appropriate shapes and locations of the cusp cannot be specified in
advance.

In the case of steady uniform subsonic flow around a NACA 0012 airfoil, a number of
numerical tests with varying free-stream Mach numbers were studied. The calculated pressure
coefficients on the surface of the airfoil agree well with the data from other numerical
methods, as shown in Fig. 8. Nevertheless. local numerical errors at the leading edge and at
the trailing edge stagnation points are noticcable.

In the derivation of the SFC equations based on the Cartesian coordinate system. it was
demonstrated that singular points occurred wherever the x-component of the velocity vector
vanishes or becomes infinite. Recent publications [6, 9, 10] related to the applications of the
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Fig. 6. Normalized error distribution for the corner flow with B =135°

SFC concept do not stress the fact that these singular points of transformation implicitly
depend not only on the solution of the velocity field. but explicitly depend on the geometry of
the boundary as well. Hence, the locations of all singular points are not known a priori and
cannot be treated a priori.

The Jacobian in Pearson’s formulation [9] does not have an obvious physical meaning.
However, Pearson pointed out that the x-coordinate may be considered as a convenient
independent variable only when the streamlines are nowhere perpendicular to the x-axis,
which severely limits the practical applicability of the method.

Breeze-Stringfellow and Burggraf [6] suggested the use of a finer grid in the region near the
singular point in order to improve the accuracy. Our numerical results show that large local
numerical errors persist even when using a finely clustered grid near the stagnation point.
Since the stagnation point is a true singular point of the transformation, local grid clustering is
not capable of removing this analytic singularity.

Singhal and Spalding [10] used a rather approximate method of placing a small cusp at the
stagnation point to remove this problem. Nevertheless. the orientation. size. and actual
location of the cusp cannot be specified a priori if the correctness of the solution is not to be
severely compromised.

There are several other essential problems related to this technique. Since the Y-coordinate
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is treated as a new dependent variable in the SFC equation, multiple-valuedness problems
could arise. For a uniform flow at moderate angles of attack, Y is double-valued on the
dividing streamline, as sketched in Fig. 9. For a uniform flow with higher angle of attack, Y is
triple-valued on the streamlines that are very close to the body, as sketched in Fig. 10. In the
case of a triple-valued problem, it is important to note that points A and B are singular points
of transformation although the velocities are not zero there. This means that the numerically
obtained results at points A and B will be unacceptably inaccurate.

One attempt was made to resolve the issue of double-valued problems. A new dependent
variable Y was defined as

Y=[Y-Y.(x), (58)
Y (x) = 3(Yy(x) + Y (%)) . (59)
Here, Yy (x). Y, (x), and Y (x) represent the equations for upper, lower, and camber surfaces
of the airfoil, respectively. With the new dependent variable Y, the surface of the body is

transformed into a curved plate of zero thickness. The governing equation for this new
dependent variable Y is
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(Y- KV, —2YV,Y, Y, +(4Y + Y)Y, =2Y], (60)

with K =0 for incompressible flows.

A uniform incompressible potential flow around a corner with several different values of
Y.(x) was used to test this idea. Results are shown in Figs. 11-13. The conclusion is that the
accuracy strongly depends on the choice of Y,(x). This is probably due to the new singularities

that are introduced with this new transformation. Indeed, the Jacobian of the new transfor-
mation

/’\_—'/ '
— gz
e

—
e

Fig. 9. Double-valued problem. Fig. 10. Triple-valued probiem.
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J=Y,=2[Y-Y,(x)]Y,=2[Y - Y.(x)]/V, (61)

shows that Y = Y _(x) represents a line of singularity, part of which is hidden inside the original
body.

6. Conclusions

Explicit vector operator forms of the three-dimensional stream function equations and the
transformed equations based on the SFC concept were derived. A number of example
calculations of both incompressible and compressible flow problems were carried out by using
the transformed stream function equations. The essential problems involved with this concept
and the possible ways to resolve these problems were discussed.

The significant features of this concept are summarized as follows:

(a) The formulation is always conservative.

(b) Boundary conditions are highly simplified. Thus, this concept is suitable for solving
inviscid flow problems with complex boundaries.

(c) This method is applicable to both incompressible and compressible flow problems.

(d) Only a one-dimensional grid (x-coordinate or 8-coordinate) is required for solving
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two-dimensional problems. The other family of grid lines. representing streamlines. is
automatically generated as a part of the solution.

(e) Singular points of the transformation are dependent not only on the geometry of the
boundary. but also implicitly on the solution of the velocity field. If numerical errors caused by
the singular points of the transformation could be efficiently reduced. this method could be
used for solving both direct and inverse problems of inviscid fluid dynamics.

(f) Singular points of the transformation are the sources of large local numerical errors in
the regions close to the singular points.

(g) Multiple-valued results represent possible problems accompanying the transformed
stream function equations. Nevertheless. this is a disadvantage of any formulation involving

stream functions, thus precluding their application for the calculation of recirculating sepa-
rated flows.

Appendix A

A.1. Stream function equations in polar coordinates (A=2)

Full equation:
[1 = (kgy Ny, + 2K, 1r) 0, +[1 - (ky,) 1, /7"
+ (/N1 = (ky,)* = 20k, /)] = w[(kip, /) + (k) — 1] /ka . (A.1)

For irrotational flows, (A.1) becomes

(1= (k) + (2K, 7Yy + (1= (k)2 /7
+ (Y, /)1 = (ky,)* = 2(kis,/r)?] = 0 (A2)

For incompressible flows, (A.1) becomes

U, T/t lr= —w . (A.3)
For incompressible, irrotational flows, (A.1) becomes

P+t + 1, = 0. (A.4)

A.2. Stream function equations in cylindrical coordinates (A=16)

Full equation:

(1= (k1) Y, + 263, 172 ) s, + (1 = (kp 1r)2) ., — i
= o[k’ (v + ¢?) = 1] /ka . (A.3)

For irrotational flows, (A.5) becomes

(1= (ke /1)1, + 26309,/ 7 )y, + (1 = (ky,/r))d.. — g.ir =0 (A.6)
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For incompressible flows, (A.5) becomes
U, +ty.,—¢gir=—-re.
For incompressible and irrotational flows, (A.S) reduces to
b, b, =4, /r=0.

A.3. Stream-function-coordinate equations in polar coordinates (A = z)

Full equation:

(r2 + rﬁ)rw = 2ryryre, + (ri - kz)r“ + r[2(kr‘,/r)2 + k* - rf,]

= wrw[rzri - kz(rf, + rz)]/ka .
For irrotational flows, (A.9) becomes
(r2 + rf,)rw - 2r9rwrow + (ri — kz)ree + r[2(kr9/r)2 + k* - ri =0,

For incompressible flows, (A.9) becomes

2, 2 _ 2. 2 23
(r'+ T )y 2roryre, + ryle ry = wrer, .

For incompressible irrotational flows, (A.9) becomes

2 2 2 2 _
(r'+ ’a)’ww =2rgr,re, + TyTes — 77, =0.

A.4. Stream-function-coordinate equations in cylindrical coordinates (A = 6)

Full equation:
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(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(1+ rf)rw =2ryr,r,. + (ri - kz/rz)r:z + ri /r= wrrw(ri =Kt =Kt 1) lka

For irrotational flows, (A.13) becomes

(1+ rf)rw —2r,r,r,, + (ri — kz/rz)r:Z + ri Ir=0.

For incompressible flows, (A.13) becomes

2 2 2, 3
(1+ rz)rw 2ryror,. + Fle: T rylr=wrr,.

For incompressible, irrotational flows, (A.13) becomes

2 2 2 —
(1+ ) =2ryrory, tryr,, + ry/r=0.

(A.13)

(A.14)

(A.15)

(A.16)
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A.5. Jacobians of the transformations in various coordinate systems

In Cartesian coordinates, ¥(x, y)— y(x. ),

N L I A.17
J det[gx Xw] Xw Lig, =11V, (A.17)

The transformation fails at all points where the x-components of the local velocity vector
equal zero or infinity.

In polar coordinates. yi(r, 6) — r(u. 8).

J=det[r‘* r”}=—r¢=—1/¢,:1/vﬂ. (A.18)
00 0«1/

The transformation fails at all points where the 6-component of the local velocity vector
equals zero or infinity.
In cylindrical coordinates, y(r, z)— r(y, z),

r: rw
J=det| F Y =—r, =1y =100V, (A.19)

z g

The transformation fails at all points where rV, equals zero or infinity.
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