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ABSTRACT

Artificial Density or Viscosity (ADV) and
Artificial Mass Flux (AMF) concepts used in the
iterative algorithms for the numerical solution
of the transonic Full Potential Equation (FPE)
have been analyzed and compared with the exact
Physically Dissipative Potential (PDP) flow
equation. Coefficients of the derivatives in the
existing artificial dissipation models were found

to bemivedesosd : dolp produce only several
of the physically existing derivatives.

Moreover, the common Artificial Density and
Artificial Viscosity formulations generate terms
of the wrong magnitude and even of the wrong sign.
The Artificial Mass Flux formulation, although

imperfect, is shown to be
Artificial Density and Arti
concepts.

to the
icial Viscosity

INTRODUCTION

Computational fluid dynamics of transonic
flows was based for a number of years on the
transonic Full Potential Equation (FPE) as a
sivelrie mathematical model. The iterative
algorithms capable of capturing isentropic
discontinuities in the solution of the
artificially time dependent [1] and artificially
dissipative [2,3,4] FPE became a standard
aerodynamic analysis and design tool.

In addition, type~dependent rotated finite
differencing [2] is usually employed to
numerically mimic the locally proper analytic
domain of dependence of the governing partial
differential equation. This means that the
second derivative of potential function ¢ in the
streamline direction, s, should be evaluated
using upstream differentiation only when the FPE
is locally hyperbolic (M2 > 1). Consequently,
only coalescence of a preferred family of
characteristics (compression waves) is allowed to
occur resulting in acceptable isentropic
discontinuities (compression shocks). Expansion
shocks, which are impossible for calorically
perfect gases, should be thus avoided. Explicit
numerical dissipation of the Artificial Density
[4] or Artificial Viscosity [2,3] type winisshs

+ Fo £o o L.

v — ¥
dowoisp is added in a fully conservative form {3]
in an attempt to nullify the truncation errors
introduced when using upstream differentiation
locally in supersonic regions of the flow field.
The similarity of Artificial Density and its
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truncated equivalent called Arti
is outlined in Appendix A.

Numerical solutions of t
FPE with the Artificial Viscgfity [2,3} or the
Artificial Density [4] exhibit
spurious oscillations behind the shock (Figure
1), and sudden overshoots ahead of the ﬁhock {5].
Although the computed pressures on thewﬁurfaces
of the objects are seemingly correct, the
computed shocks diffuse quickly with the growing
distance from the boundary (Figure 2). | These
mewupdmpenrped phenomena can be observaed on a fine
grid when the entire field of isabars is plotted.

A number of different analytic for?ulations
[6,7,8] for the artificial dissipation were
developed in. the past. Nevertheless, there were
only a few isolated attempts {9,10] at |
ppalytically analyzing these concepts and
suggesting possible reasons for the fnsguenty
obtained non-physical results.

The objective of this paper is to glearly
expose all the terms generated by the Aﬁtificial
Density [4] or Viscosity [2,3] (ADV) schemes,the
Artificial Mass Flux (AMF) {9,10] scheme and the
Directional Flux Biasing (DFB) [11,12,13]
formulation and to relate them to the terms that
exist in a Physically Dissipative Potential (PDP)
flow equation [l4].

cial Viscosity

multidimensional

THE FULL POTENTIAL EQUATION :
Mass conservation for steady homentropi¢ and
homoenergetic irrotational flows of inviscid
fluids without body forces and without mass
sources or sinks is given as

Ve(pVv) = Vo (p¥d) = 0 ; (D

where p is the local fluid density and v.is the
local velocity vector. For the sake of
"simplicity, further analysis will be pewformed in
two dimensions. Expressed in a locally
streamline-aligned (s,n), orthogonal, two-
dimensional coordinate system, Eq. 1 bedomes

Te(pV) = (52 e, + 2= ) (p %‘2 .

dn * p—aﬁ e)) = 0

dn . n
(2)

where eg and e, are the unit vectors in:s and n
direction, respectively.

s

Let 3, $s and 3 ¢n' (3

ds 3n
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By definition

V= ¢sés and ¢n =0 (4)
Then

- Py
Ve(pV) = p [¢ss + ¢nn + E_ ¢s] =0 (5)

The local speed of sound, a, normalized with the
critical speed of sound, ax, becomes

R VS %
i il (C ROk ) (6)

where Y is the ratio of specific heats and the
gas is assumed to be calorically perfect.
Similarly

1

Y-1

. (25)21} €2

{Y+l _ Y 1 [(gi)Z

In order to simplify notation, let

2 a2 N P ¢s ¢n
T3 P bemg s b =0
a, * * *

(8)
Then, from Eq. 7 it follows that

1
— -1
P ) ¥-1
s s Y+l Y-1 2

P %y -7 @l (¢4,

(9)

since ¢, = 0 by definition (Eq. 4).
Eq. 9 and Eq. 6 it follows that

Hence, from

2

2
. ¢S: - _—g—- ¢SS =-M ¢SS (10)
a - -

where the local Mach number is defined as
- .52 '
M = a 2 1 (11)

The Full Potential Equation (FPE) (Eq. 5) in its
final non-conservative canonical form [2] then
becomes

o 2
Ve(p¥) = p [(-M) 4+ 4 1 =0 (12)

The FPE is a homogeneous, quasi-linear, partial
differential equation of mixed elliptic-
hyperbolic type and represents an exact
non-dissipative analytical model which conserves
mass and energy, but does not satisfy momentum
conservation. Instead, it implicitly satisfies
the constant entropy condition throughout the

flowfield.

ARTIFICIAL DENSITY OR VISCOSITY CONCEPT

The Artificial Density [4] or Artificia)
Viscosity [2,3] concept (ADV) of generatﬁng the
numerical dissipation in a locally superdon1c
region is generally formulated as

p=p- Cﬁps (13)

Here, C = const. having the units of lenﬁth and p
is an appropriate switching function. TNe
derivative of density must be performed in
locally upstream direction. Modified maks
conservation then becomes

v = (556, + 58 1 - cim b8,

+ (p - Cﬁps)¢n;n] 4w
Hence,
Ve(pUd) = p b+ pd - Cup b - Cﬁpss¢;
- Chipgdy, ¢ b, + 0 - Chpd - cﬁp;¢nn
- it g, B

Since ¢, = 0, it follows that

©

- .
VU = p(le ¢ 0F b bl O ln (2 4,

Ps Ps - bs
My ¢ss * o énn) T ¥ e 4‘.} (16)
From Eq. 10 it follows (since ¢, = 0) that
2 .2
Pes =7 7% {[p ¢s+ss p“ss) * p¢s¢sssla

- v¢s?+ss<- T2d,) an

17 results in

Using Eq. 10 and Eq. 11 in Eq.

2
Pss 2 2 2 (4e4)
SR U (C 2 L ll_ffzif— (18)

The artificially dissipative FPE, that i, mass
conservation equation based on Artificia) Denmsity
or Artificial Viscosity (ADV) concept then
assumes its most general form

Ve (pvé)

= P[(l'"2)¢ss *éonl *Eppy = 0 (19

A common perception is that Eppy comtains
only the term ¢sss [4]. This term produces



linear dissipation; hence the expression
artificial or numerical viscosity. The actual
content of the term Eppy has never been correctly
analytically determined [9,10]. From Eq. 10, Eg.
16, and Eq. 18 it follows that the most general
exact analytic form of Eppy is

2
(
-2 ~ 2 2 ss
EADV = Cp{uM ¢sss - uM® [(2-Y)M"-2] ——$;'—

~ 2 ¢ss¢nn =
+ uM ——$——— + p
s

M2¢ss} (20)

for any arbitrary switching function j.

The conventional form of the switching
function i used in the Artificial Density {4] and
in the Artificial Viscosity [2,3] concepts is
usually expressed as

2
~ Mc 2\n
b= (1 - —5-)(n7) (20
M
where M. is the cut-off [15] Mach number (Mc2 s
1) and n is an integer (Table 1). This

expression for i is deduced from the form of
truncation errors resulting when applying locally
upstream differentiation to the term ¢g¢ that
multiplies (1-M2) term in the FPE (Eq. 12). For
the generalized conventional value of ﬁ given by
Eq. 21 it is now possible to analytically resolve
the corresponding numerical dissipation, actually

the error term Eppy, given by Eq. 20. Since
2 2
RN
MT = -7 (22)

a

with the help of Eq. 6 if follows that

2

1 2 2 Y-1
(M )s A [2¢s¢ssa - (¢s) - _E_) 24’s¢ss] (23)

a

This can also be written with the help of Eq. 6
as

3
)
2 s Y+l Y-1 2 s
Mg =g 2 g -7 W71+ 1) =
(24)

Finally

2 s M2 : 2
M5 = (v+1) ;Z ¢ = $;,[2 + (-] 4 125)

so that the generalized conventional formulation
(Eq. 21) for fi gives

¢ss (MZ)n-l
2
s a

2

B = (D) .2 + neiton 2] (26)

Thus, with the conventional formula for the
switching function p (Eq. 21) the artificially
dissipative FPE (Eq. 19) and (Eq. 20) based on

)

* (Table 1) of the type p =1 - p.

Artificial Density or Artificial Viscosity (ADV)
concept assumes the following exact gen¢ral
analytic form

Vepve) = b ( LQ-tD v g ]

nn

¢

2 2 2.n ¢ss nn
+ C(M"=M 7) (M%) ——g———
¢ s

2., 2,,.2.n
oM HMHT ¢

+ C[(M2—Mc2) (2-(2-1)M%) + ngll (MC2+N¢M2_MCZ))]

(27)

The full effect of using the conventionsl
formulations for the generalized switchiing
function p (Eq. 24) is now available for
inspection. Actually, there ese, several
additional attempts at creating a better model
for the artificial dissipation. One sugh attempt
[6] uses aommadmdias model that involves local grid
spacing behind the shock wave. The model used by
Sherif and Hafez [16] uses a switching ﬂunction
With the help
of Eq. 10 and Eq. 20 it can be seen that this
results in the error term of the form

¢ss*nn

4

B

Eypy = € p{U-p) M2 §___+ (1-p) M2

§8S

2
CTD)
2 2 2 ss
+ M7 [((2-1M" - 2) (1-p) + pM] (28)
-iE:*}

Consequently, the following questions could
be asked: a) what are the effects of the
artificial terms on the solution of exact
non-dissipative FPE (Eq. 12), b) do these terms
have effects similar to the physical visicous
dissipation, and c¢) what should be the .
appropriate form of the switching functipn ¥ that
will make the artificially dissipative FPE (Eq.
27) look as much as possible as an exact
physically dissipative potential transomic flow
equation.

One candidate for a physical dissiﬂative
model is the small perturbation Viscous+Transonic
(V-T) equation which was derived by Cole [17},

Sichel [18], and Ryzhov and Shefter llgﬂw It can
be expressed as
- (v-1) T T*L(l A

X XX yy gc I?' XXX }

which is a combination of small perturbation
transonic potential equation and Burgers equation
[18]. It includes certain aspects of the heat
conductivity_and the longitudinal viscosity of
the gas. Here, B' is the Prandtl number based on
longitudinal viscosity pu", and # is the wvelocity
perfurbation potential. This equation was -
successfully numerically integrated by Chin [20]
and Sator [21].

Actually, a more complete, non-linear,
Physically Dissipative Potential flow equation
(PDP) was derived recently by Dulikravich and
Kennon {14]. They combined mass, momentum and



energy conservation equations into a single mass
conservation for a calorically perfect gas

-

3 V'Vl)

p{.%gﬂ- Vo—+[(VcV)_

3t (V'V)
pa a

m‘._.

= - 13 {pve(vx (Wxv)} + Ve [2(V V)V

+ % (p (Vx V) +V (A(VeV))]})

Y -1

{¢ + Vv« (k'D)) (30)
a

Here, & is the viscous dissipation function

- - - 2 - -
€ = 2p {Ve[(VeV) V] + = (va) - Vey(Vev)}

-2

+ A (VeV) (31)

From the expanded Crocco-Wazsonyi equation [l4]

-
- -

av
TVs - Vho = - Vx (VxV)+ ETY

- % (Z(V(pV) :I)d-Vx [u(vxv)] + V[L(V-V)]} (32) |

where s is the specific entropy and hy is the
specific stagnation enthalpy, they have derived
the vector operator form of the PDP equation

2
a~ dt
i 2
= - 5 v e (VI2u + 0) V)
a

L (24 (Ve (9427) V4 -(V4eW) (VoV4)]

+ 1 (%) + Lo veaom - 3 u ) g? v

TheYcanonica orm of this equation for

two-dimensional steady flows is

¢
2 s
p[(l-M )7+SS * 4>l'l!‘l] +L{l+ _Pﬁ 8_2- (¢SSS * ¢Sl'll"l)
2 2
4 0%+ (4
§S nn
# o-» Q- P..) )
a -
QSS*I’"\
-I (Y—1>2(1-2§7) 2
a -
2
4_)
; 1 _ ey “Ten’ J
+f -1 z(P,, 2 —3 } 0 (34)

9

Here, ¢ YZ the shear viscosity coefficient, Aéis
the secondary viscosity coefficient, p"k 2p+d is
the longitudinal [18] viscosity coeffi¢ipnt, k,is
the heat conductivity coefficient, C, is the

coefficient of specific heat at constemt pressure

C ‘l"
" |
and g = is the Prandtl number based on

longitudinal viscosity [18]. The coeffirients u,
A, and k are assumed to be constants. It is
obvious that the V-T equation (Eq. 29) ¢pntains

only the most dominant linear dissipatidn term,
since all other nonlinear dissipation tErms were
omitted during the linearization process.
Therefore, it would be appropriate to cqmpare the
corresponding terms in the mnew—physiesd “‘ﬂz
mumerieekly dissipative FPE (Eq. 27 or ﬁq 28)

and in the PDP (Eq. 34) rather than in ghe
linearized small perturbation V-T equatfon (Eq.
29). Consequently, the ratio of terms
multiplying ($gcs) in equations 27 and 34 is
(Figure 3)

Cp (MZ—MCZ) (MZ)n

%sss ~ ¢
§§S ol + l:l) s
£ R 2
Ke a
2 2
(M- M%)
- c - { c¢ ey (35)
Jle+ —F;) s

The ratio of terms multiplying (stﬁnn) in
equations 27 and 34 is (Figure 4)

2,2
(M M ) (MZ)n

Cp ——$———————————
s °C‘

o = = | ]
ssnm - _a(y- 1)1— (1- 21‘—) 2(v- ”L“ zl‘—)
Re 2 e
2 2
M°-M_5)
'{T_c 3" a%p) | (36)
-

The ratio of terms multiplying (+ss)2 in
equations 27 and 34 is (Figure 5)

(v+1) Mcz + n(M?*ch)
a2 (MZ—Mcﬁb

cl(2-(2-7)M?) + ]

1
-p (1 - o5 ) (v-1)
B B

(37)

It would be ideal to havewasss =71, Gggnn = 1 and

n2 = 1 over the entire range of Mach aumbers.
ss

Nevertheless, from this comparison it is clear
that the artificial density concept [4} and the

artificial viscosity concept [2] both generate
terms that do not have the same magnitude and

often not even the same sign as the physical



dissipation terms. The true nature and effect of

the introduction of oy dissenfey the
cut-of f Mach number, M., can also be analyzed.
1 ’ iy . ew———
st et
K] 3 [l 1. o o v .
STk Gl ey aemubemfipyips

A somewhat different formulation is known as
Directional Flux Biasing (DFB) scheme [11,12,13].

- 1 2 2,1/2
Porp = P " i (p(4." + ¢ )70 (38)

Actually, it can be shown that DFB formulation is
equivalent to ADV formulation (Appendix B).

ARTIFICIAL MASS FLUX CONCEPT

Instead of using the artificial density
(compressibility) [4] or the artificial viscosity
[2] formulation, the Artificial Mass Flux (AMF)
The basic

[9,10] concept is hereby suggested
idea is to upstream differentiate
density, but the entire streamwise
every supersonic point.

The general Artifi
applied to the mass con
as

ial Mass Flux formulation
rvati be wrj

Jormopek

+ lod ] e} =0 (39)
From Eq. 12 and Eq. 39 it follows that
ve o = e v e - (1b
oo A
S (b, -5 pl ey ledl e) =0 wO)
M

or finally

Ve (o) = (p g+ (p 4 )

= pl(1-M%) b+ b ]

n

* Eavp (41)

= _ _ _l _ £
p=p-C (1 Mz)ps =p - Cuop (42)

* and the Artificial Mass Flux switching function p
is defined as

= 1
p=v (- —5)
- Y

(43)

The exact general analytic form of the error
("numerical dissipation") term Epyp (Eq. 20 and
Eq. 41) then becomes

ek g

2
Eymp = Cp (WM ¢4 -w M? [2-vm? - 2) —ii—

2
ML saalh L ML (44)

From Eq. 43 it follows that

. . )

Ho=v (1 --==)4+v

s s MZ Mh

With the help of Eq. 25 this becomes

- 1 ss

B = v, (1 - M2) + v (Y+1) ;—3 (46)
s AMF

As a result, the Amipifisimdedd wPieprre doﬁcept

produces the following general form

s (pv) = p [(1-4) b v b 1+ Cp[v?cn2-1)¢

nn 8§88
2?
C DM
2 2 (Y+1) 55 |
= -D((2-1)M"-2) + e
-3 8
$_ 4
+ v (M2-D) —Ei-ﬂﬂ sy, - g ) (47)

s !
Snce) y,
The formulation of/v could be deduced | M a number
of ways [9,10]. #££ the main objective is to make
the coefficients multiplying ¢gg¢ term have the
same sign and magnitude in both Eq. 47
("numerical dissipation") and in Eq. 34 (physical

dissipation), then the adequate value for v
should be !
|
PR S |
p" 2 A ¢ ‘
a s
v = 7 = 7 ; (48)
Cp (M -1) C pa~ (M -1) !
where
" Y-1
A=q" (1 +—7) (49)
P
Re AMF
The Avsswiufivmmingclep b switching function
consequently becomes
- Ad
p=v -2 Al (50)

sz CpazM2 - ¢ PIs -
Notice also that the AMF concept (Eqs. 41, 42, 49
and 12) creates a familiar form of artificial

density

. . Py ¢
p=p-Cyp P, =0 = A $§E =p + A —;3 (51}
. s a

The non-physical terms arising from the AMF can
now be written as



AMF a2 S55 a2 az(Mz—l)
2
2 2 C
- (2-V)M°-2)] -:§5~— PV, (M°-1) ry ¢ss} (52)

From Eq. 48 it follows that

¢ paz(Mz—l) - [¢s psaz(Mz—l) + ¢sp(az)s

[pal(m2-1)12

(M2-1) + ¢s pa2 M%) 1
5
3 7 ) (53)
M-1)]

[paz(

Implementation of Eq. 6 and Eq. 25 (together with
the fact that ($5)2 = a2M2P in Eq. 53 results in

$ 2
pa"(M"-1) (M"-1) a
Introducing Eq. 54 in Eq. 52 results in the
desired form of the AMF M“,\
Ve = p (D) s b ]

P ss nn
¢
s 1
P A5 s * 7 b tan
a a
2
4_0
+ [3 + 20v-1)M? - Q;—”] —%} (55)
a a

We can now perform the comparison of coefficients
of the derivatives generated by the AMF concept
(Eq. 55) with the coefficients of the like

derivatives in the PDP (Eq. 3&)%_

_ R ié
2
¢ = 2 3 =1 (56)
sss " Y-1 s
B+ -
Eé‘ Py a -
A
. 32 B
[ = m — =1 (57)
ssan -u (v-1) 2 (1- ZEW)
— 2
11@ a - u _

From Eq. 57 it follows that

A=-p (v-1) 2 (1- 2% (58)
Re L -

Notice that the Prandtl number, g?, based on

longitudinal viscosity, u", can be related to the

Prandtl number, %, based on the shear viscosity,

u, as follows

1 .1
A P, ‘
From Eq. 49, Eq. 58 and Eq. 59, it folldws that
the condition for @ggnn = 1 is satisfied if

B
n (59)

1
(v-1) (& - 3)
ng____*Pf_ - - _Y- !1
s v 2 0-) #- % -2- -7 2{.}}0)
Since the exact expression should be p" = 2u

+ A, Eq. 60 indicates that A = -(Z+SY-1215) in

order to make aggnn = 1. y-1

The problem arises, though, with the ratio
of coefficients multiplying (¢gs)? term fn Eq. 55
and in Eq. 34. Using Eq. 59 it follows that

A3+ 20-nm? - 1L L
o 2 - a a (61)
sS " 1 p., (v-1)
-pna - g By S
Re " a

After introducing Eq. 49, Eq. 60 and Eq. 6 in Eq.
61, it follows that the ratio of terms
multiplying (éss)2 resulting from the AM
(Eq. 55) and the terms multiplying (¢ss)
PDP flow equation (Eq. 34) is

concept
in the

2
2 4R+ 2(Y-1) (Y+1) + (¥-1) ¢§L

e TTF OCDGSUE (0 oo 62
]

@ (62)

For diatomic gases (Y = 7/5 and P = 3/4) it
follows that

(63)

For monoatomic gases (Y = 5/3 and Pe= 2/3) it
follows that )

2
2 36 4t
uss__T 2 - : (64)
‘4
S

Thus, for AMF formulation the ratio of
coefficients multiplying (¢Ss)2 term vafies over
the entire Mach number range (Figure 5),
Nevertheless, it has the correct sign. 1In
addition, one-dimensional versions of the FPE
with the ADV formulation and with the AHf
formulation were integrated using fourth order
Runge-Kutta scheme. The shock profiles indicate

the e the AMF formulation (Figure
6). ﬁrmﬁmttin¥ -

CONCLUSIONS

Using strictly analytic tools, it was —
determined that the commonly used artifigial
density and artificial viscosity dissipation
models for the numerical solution of the
non-dissipative Full Potential Equation (FPE)
governing transonic steady flows produce a
variety of additional terms. Some of thedse terms
are of the same type as the terms that exist in a
Physically Dissipative Potential (PDP)equation.



Neverthelghs, their coefficients have often an
entirely g magnitude$and signS. The reason
that the existing numerical dissipation models
give seemingly accurate results is that certain
owmunmmmes artificial dissipation terms compensate
for some of the remaining eswwweswe artificial
dissipation terms.

On the other hand, the Artificial Mass Flu
(AMF) dissipation concept offers an
since several of its terms can be matched with
the corresponding terms in the

Moreover, the AMF formulation

9. Dulikravich, G. S. and Niederdrenk, P.,
"Artificial Mass Concept and Transonic
Viscous Flow Equation," ARO Report ﬂd—l,
Transactions of the First Army Conference on
Applied Mathematics and Computing,
Washington, D.C., May 9-11, 1983.

10. Dulikravich, G. S., "Common Misconcehtions in
the Calculation of Transonic Full Potential
Flows," ASME paper GT-84-211, ASME Gas

DPkexactly. Turbine Conference, Amsterdam, The
an be-easi l@ Netherlands, June 3-7, 1984.
incorporated in the existing FRE solvers by N

introducing a new form of the sWitching function
given by Eq. 51. The details aRe given in the

11. Hafez, M. M., Osher, S., and Whitlow, W.
"Improved Finite Difference Schemes for

Appendix C.
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APPENDIX A

The Artificial Density [4] and the
Artificial Viscosity [3] concepts are essentially
the same {4] as confirmed by the following
derivation.

Mass conservation with the Artificial
Density can be expressed as

(pU)x + (pV)y = (pu + Q)x + (pv + R)y =0 (A.l)
where
Q= - Cppu (A.2)
R =- Cﬁpsv (A.3)
From Eq. 10 it follows that
M2 q_ .
R Sl e N (a.4)
] a
It is also easy to show that
1 2 2

= = A.
éss q2 (u ¢xx + 2uv éxy + v ¢yy) (A.5)
where
q2 =u? s v a v$ » V¢ (A.6)

Hence, the elements of the Artificial Density are

2
(u ¢xx (A.7)

+ 2uv ¢xy + v2 )

ole

F-RE4

(u2 ¢xx + 2uv ¢xy + vl é )

yy

Cpp

2

a
E%E (A.8)
a

The Artificial Viscosity [2,3] formulation uses
the following truncated version

-~ C 2

Q= :gﬂ (W, + uvh, ) (4.9)
R . Cou 2

R 2 (uv¢xy f v ¢yy) (A.10)
APPENDIX B

The Pirectional Flux Biasing (DFB) Scheme uses
the following form of artificial density in the
locally supersonic flow

~ 1 2 2.1/2
pDFB - $_ [(pés) - [p(¢s + ¢'n ) ! ]s} (B.1)
s
- — ~-1/2
~ 1 1 2 2
Por = P 7 $— {ps 4’s tP3 (¢s +,¢n )
- s
(2¢s¢ss * 24’n‘*’ns)} (B.2)
Nevertheless, ¢, = 0 by definition. Hence

Porg = P = (P + p —is} =er-{o,-p (;5 —%))
5 M
(B.3)

- )
Pppg = P - (1 - ;5) P (B.4)

s = Papv
APPENDIX C

Artificial Mass Flux (AMF) formulation (Eq. 41)

gan be recast in the familiar Qrtificial glensity
orm, that is, :

(p e, + (p ¢, = 0 (c.1)

can be rewritten as

u v
P d, : 3
e ] L % ]
0 ¢n xy v u (C.2)
9 q
or
P é, q P4 g Pt
e 1L vy
=le ¢ A u
n PR 3 "
(€C.3)
Nevertheless, ¢, = 0 and ¢4 = q. Hence
(p és)s + (p¢»n)n = (p u)x + (:;v)y
- [(BY - (pu
[(q ¢n)x (q ¢n)y] - (C.4)
Wﬁ..smce
b =g (b + V)
s p < y (C.5)
it follows that
$ =S ud T vh )
sX q xx Xy (c.6)
Similarly, since
§ =Lvp +ub) =0
n q x y) = (c.7)
and C.6, it follows that ;
dnx = py = O (c.8)

Hence, AMF can be expressed in a typical ADV form

(b w, + (p vy =0 (c.9)

where, after combining Eq. 51, Eq. 58 and Eq. 60
it follows that '



1 + 2(y-1)

2(v-1)

PP - (1-2
a2 (v-1) (4 - 4)° 'ss (C.10)
Pf
or
~ (2 + 1%}) 20-1) §__
P ¢1t; 1+ 2(v-1) “:i (c.11)
or
¥-1

- (2 + =) 2(v-1)
; 5 ; (c.12)

p=p-|% 1 + 2(y-1) p_gl P

Thus, AMF formulation requires only one physical
input parameter besides the Prandtl number. This

input parameter is the whidebontofphyrEye

wivewmmr ooy Fw M&.
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Iso-Mach Lines for a Fine Grid
(256x48) Solution of an FPE

with ADV formulation. Airfeil is
NACAOO12 With M_ = 0.94. Notice a
"Checker Board" Pattern Along the
Shock.
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~ 1 Hafez et al [4];
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M scc Appendix ‘)
2;-;3-(:(1—-1—2),)s Amaraetalln
M 1.0 ¢35 2.2
2 :
_ M Jameson [15]
3lp=p-(1~- =) g (sec Appendix ‘A)
M i 0.8 : M2 < 1.0
~ 2 Roach and Sanlmr {6};
bP‘P‘C(M‘l)PS c=2.0 :
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0.0 s w s 1.0
615 = o - _.n Sherif and qucz [16)
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Table 1. A Summary of the Most Prominent

Forms of the Artificial Dissipation
Based on the Modified Den51ty
Formulatlon




