
 

Inverse  Engineering  

George S. Dulikravich1, Helcio R. B. Orlande2 and Brian H. Dennis3 

 

1Florida International University, Department of Mechanical & Materials Eng. 
  10555 West Flagler Street, Room EC 3474, Miami, Florida 33174, U.S.A. 
2Federal University of Rio de Janeiro, Department of Mechanical Eng., COPPE,  
  Cid. Universitaria, Cx. Postal 68503, Rio de Janeiro, RJ, 21941-972, Brazil 
3Department of Mechanical and Aerospace Eng., University of Texas at Arlington,  
  Arlington, Texas 78712, U.S.A. 
dulikrav@fiu.edu, helcio@serv.com.ufrj.br,  
dennis@mae.uta.edu 

 
 

Inverse problems are rapidly becoming a multi-disciplinary field with many practi-
cal engineering applications. The objective of this lecture is to present several such 
multi-disciplinary concepts and applications. In some examples, sophisticated 
regularization formulations were used. In other examples, different optimization 
algorithms were used as tools to solve de facto inverse problems. Due to the 
mathematical complexity of these multi-disciplinary and often multi-scale inverse 
problems, the most widely acceptable formulations eventually result in a need for 
minimization of a certain norm or a simultaneous extremization of several such 
norms. These single-objective and multi-objective minimization problems are then 
solved using appropriate robust evolutionary optimization algorithms. Specifically, 
we focus here on inverse problems of determining spatial distribution of a heat 
source for specified thermal boundary conditions, finding simultaneously thermal 
and stress/deformation boundary conditions on inaccessible boundaries, and de-
termining chemical compositions of steel alloys for specified multiple properties. 

1  Introduction 

If the inverse problem involves the estimation of only few unknown parameters, 
such as the estimation of a thermal conductivity value from the transient tempera-
ture measurements in a solid, the averaging capabilities provided by the minimiza-
tion of objective functions such as ordinary least squares norm can result in stable 
solutions. Indeed, other similar objective functions can be defined that are based 
on statistical fundamentals regarding the measurement errors and the unknown pa-
rameters, which are also capable of providing stable solutions for the parameter 
estimation problem [1,2]. However, if the inverse problem involves the estimation 
of a large number of parameters, such as the recovery of the unknown transient 
heat flux components ii ftf ≡)( at times ti, i = 1,…,I, excursions and oscillations 
of the solution may occur. Therefore, the solution of this type of inverse problems, 
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known as function estimation problems, requires special regularization (stabiliza-
tion) techniques. Here, we used Alifanov’s Iterative Regularization Method based 
on the conjugate gradient method of minimization, as well as on the use of an ad-
joint problem for the computation of the gradient direction [3-17]. Alternatively, 
one could use boundary regularization methods [18-21] with finite elements. 
 
2  Conjugate Gradient Method of Function Estimation with  
    Adjoint Problem Formulation 
 
First, let us consider an inverse problem dealing with the estimation of a distrib-
uted heat source term in a two-region heat conduction problem.  The physical 
problem of interest is typical of the manufacturing of Micro-Electro-Mechanical 
Systems (MEMS) and is called Hot Embossing Microfabrication Microreplication 
(HEMM). Such technique consists of pressing a mold on a substrate under a pre-
scribed thermal history and can also be used for the fabrication of macro-scale 
parts. In general, the polymer substrate and the mold are heated to a temperature 
just above the polymer glass transition temperature. The mold is then pressed on 
the polymer until features get replicated and then both the mold and the substrate 
are cooled down to a temperature below the glass transition temperature for de-
embossing [17]. The estimation of the source term within the mold will be accom-
plished by using the temperature variation at selected points within the substrate. 
Such an inverse problem can be aimed at the identification of the unknown source 
term by using temperature measurements within the substrate, or, alternatively, at 
the design of the source term that will result in a prescribed temperature history 
required for the HEMM technique.  

The physical problem considered in this work consists of the two-dimensional 
heat conduction in two contacting rectangular regions, as depicted in Figure 1. The 
widths of both regions are a, while the thickness of region A is b and the thickness 
of region B is (c-b).  Regions A and B are initially at the uniform temperatures T0A 
and T0B, respectively. For t > 0, the two regions are placed in contact and heat is 
generated in region B at a volumetric rate g(x,y,t). The contact conductance at the 
interface between the two regions, hc, is supposed to be uniform and the other 
boundaries of regions A and B are supposed to be insulated.  

The mathematical model utilizes the following dimensionless groups 
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where k is the thermal conductivity and α is the thermal diffusivity. 
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Fig. 1. Geometry, coordinates and boundary conditions. 

By assuming that the thermal properties of regions A and B are constant, the 
mathematical formulation for this problem is given in dimensionless form as: 
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The problem defined by eqns. (2.a-f) and (3.a-f), with known initial and boundary 
conditions, contact conductance, thermophysical properties and source term con-
stitutes a direct problem that is concerned with the determination of the transient 
temperature fields θA(X,Y,τ) and θB(X,Y,τ).  

For the inverse problem of interest here, the heat source term G(X,Y,τ) is re-
garded as unknown, while the other quantities appearing in the formulation of the 
direct problem are considered to be known. For the solution of the inverse prob-
lem, we consider the available transient temperature histories µAm(τ) at positions 
locations (Xm,Ym), m = 1,..,M, in region A, as well as µBn(τ), n = 1,..,N, at locations 
(Xn,Yn) in region B. For the design inverse problem, µAm(τ) and µBn(τ) represent 
desired temperatures for the fabrication procedure, while for the identification in-
verse problem, µAm(τ) and µBn(τ) represent temperature measurements. The meas-
urements contain errors, which are supposed to be additive, uncorrelated, normally 
distributed, with known and constant standard deviation and zero mean.  

For the estimation of the unknown function G(X,Y,τ), we make no a priori as-
sumption regarding its functional form, except that it belongs to the Hilbert space 
of square-integrable functions [2-16] in the domain 0 < X < 1, B < Y < C and 0 < τ 
< τf, where τf is the duration of the time interval of concern for the inverse analy-
sis. For the solution of the present inverse problem, we consider the minimization 
of the following functional. 
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For the minimization of the objective functional (4) two auxiliary problems are 
developed, namely the sensitivity problem and the adjoint problem. The sensitivity 
problem is used to determine the variations ∆θA(X,Y,τ) and ∆θB(X,Y,τ) when the 
unknown function is perturbed by ∆G(X,Y,τ) [2-16]. The sensitivity problem is de-
rived by substituting into the direct problem given by eqns. (2.a-f) and (3.a-f), 
θA(X,Y,τ) by [θA(X,Y,τ)+ ∆θA(X,Y,τ)], θB(X,Y,τ) by [θB(X,Y,τ)+ ∆θB(X,Y,τ)] and 
G(X,Y,τ) by [G(X,Y,τ)+ ∆G(X,Y,τ)]. The original direct problem is then subtracted 
from the resulting equations in order to obtain the following sensitivity problem: 
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The adjoint problem is derived by multiplying the governing equations of the di-
rect problem, eqns. (2.a) and (3.a) by the Lagrange multipliers λA(X,Y,τ) and 
λB(X,Y,τ), respectively. The equations are then integrated in the spatial and time 
domains that are valid and added to the original functional (4). The directional de-
rivative of the extended functional in the direction of the perturbation of the un-
known function is then obtained and the resultant expression, after some lengthy 
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but straightforward manipulations, is allowed to go to zero [2-16]. The following 
adjoint problem for the determination of the Lagrange multipliers λA(X,Y,τ) and 
λB(X,Y,τ) results in 
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By applying the limiting process used to obtain the adjoint problem, the direc-
tional derivative of the objective functional along the direction of the perturbation 
∆G(X,Y,τ) reduces to 
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We now invoke the hypothesis that the unknown function belongs to the Hilbert 
space of square integrable functions in the domain 0 < X < 1, B < Y < C and 0 < τ 
< τf, so that we can write such directional derivative as 
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By comparing eqns. (9.a) and (9.b) we obtain the gradient direction as 

K
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The iterative procedure of the conjugate gradient method, as applied to the estima-
tion of the function G(X,Y,τ), is given by 

1 ( , , ) ( , , ) ( , , )k k k kG X Y G X Y d X Yτ τ β τ+ = −  (11.a) 

where the superscript k denotes the number of iterations and � k is the search step 
size. The direction of descent, d k , is obtained as a linear combination of the gradi-
ent direction at iteration k with directions of descent at previous iterations. It is 
given as [2-16] 
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Different expressions are available in the literature for the conjugation coefficient, 
γ k . In this work, we use the so-called Fletcher-Reeves version of the conjugate 
gradient method, where the conjugation coefficient is given as [2-16] 
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The search step size is obtained by minimizing the objective functional with re-
spect to � k  at each iteration [2-16]. The following expression results for the pre-
sent inverse problem 
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where ∆θA(X,Y,τ;dk) and ∆θB(X,Y,τ;d k ) are the solutions of the sensitivity problem 
given by eqns. (5.a-f) and (6.a-f), obtained by setting ∆G(X,Y,τ) =  d k (X,Y,τ). 

After developing the expressions for the search step size and for the gradient 
direction, the iterative procedure of the conjugate gradient method given by eqns. 
(11.a-d) can be applied until a suitable convergence criterion is satisfied. The 
minimization of the objective functional with the conjugate gradient method and 
adjoint problem formulation can be suitably arranged in a computational algo-
rithm, which is omitted here for the sake of brevity. The reader should consult ref-
erences [2-16] for further details. In this paper, the iterative procedure was stopped 
when the objective functional given by equation (4) became sufficiently small. 
The discrepancy principle [2-16] was used to specify the tolerance for the stop-
ping criterion if temperature measurements containing random errors were used 
for the inverse identification of the source term. For the inverse design problem, 
the tolerance was specified as a small number. 

We consider here the inverse problem of designing the heat source term in the 
mold so that the temperature at the mold/substrate interface follows a desired his-
tory imposed by the manufacturing process. We assumed the substrate and the 
mold to have the following properties [17]: kA = 0.19 W m-1 K-1, αA = 1.144 x 10-7 
m2 s-1, kB = 14.8 W m-1 K-1 and αB = 9.056 x 10-6 m2 s-1, that is, K = 77.89 and Λ = 
79.16. Both regions A and B were initially at the same temperature T0A = T0B = 27 
oC. The mold and substrate dimensions (Figure 1) were a = 0.075 m, b = 0.001 
m,(b-c) = 0.065 m and the duration of the hot embossing process was taken as 
1400 s, that is, B = 0.013, C = 1 and τf = 0.028. Uniform interface temperature and 
perfect contact between regions A and B were assumed for the results presented 
here. Figure 2 presents the desired temperature variation at the interface between 
regions A and B, as well as the calculated temperatures obtained with the heat 
source term that resulted from the solution of the present inverse design problem. 
The agreement between desired and calculated temperatures is perfect within the 
graph scale, despite the fact that the desired temperature variation contains sharp 
variations. Figures 3.a-d present the resultant heat source term at positions Y = 
0.013, 0.34, 0.67 and 1.0, respectively. Each of these figures shows the results for 
X = 0.02, 0.22, 0.42 and 0.98. We note in figures 3.a-d that the source term found 
from the design procedure does not vary along the X direction for such test case. 
In addition, periods of heating (positive source) and cooling (negative source) can 
be clearly identified, as required for the sharp increase and decrease in tempera-
ture at times τ = 0 and τ = 0.02, respectively (see Figure 2). The obtained results 
reveal that the conjugate gradient method of function estimation is capable of pro-
viding smooth and stable solutions for the source term. We note that the present 
inverse design analysis assumes that the source term is continuous within the 
mold, but, for practical implementation discrete heat sources and cooling channels 
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will be required. The results obtained with the conjugate gradient method of func-
tion estimation permit the selection of the number and position of the heat sources 
and cooling channels, as well as the heating power, cooling fluid temperature and 
convective heat transfer coefficient, which will result in the desired interface tem-
perature variation. 
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Fig. 2. Comparison between desired and calculated interface temperatures. 
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Fig. 3. Inverse solution at: (a) Y = 0.013, (b) Y = 0.34, (c) Y = 0.67, (d) Y = 1. 



10      George S. Dulikravich, Helcio R. B. Orlande and Brian H. Dennis 

  

3  A Finite Element Formulation for Finding Unknown 
    Boundary Conditions in 3-D Steady Thermoelasticity  

It is often difficult or even impossible to place temperature probes, heat flux 
probes, or strain gauges on certain parts of a surface of a solid body. This can be 
due to its small size, geometric inaccessibility, or exposure to a hostile environ-
ment. For inverse problems, the unknown boundary conditions on parts of the 
boundary can be determined by providing overspecified boundary conditions (en-
forcing both Dirichlet and Neumann type boundary conditions) on at least some of 
the remaining portions of the boundary, and providing either Dirichlet or Neu-
mann type boundary conditions on the rest of the boundary [22-24]. It is possible, 
after a series of algebraic manipulations, to transform the original system of equa-
tions into a system which enforces the overspecified boundary conditions and in-
cludes the unknown boundary conditions as a part of the unknown solution vector. 
This formulation is an adaptation of a method used by Martin and Dulikravich 
[25,26] for the inverse detection of boundary conditions in steady heat conduction. 
Specifically, this work represents an extension of the work presented by the au-
thors [18,19,21].  

In the case of steady combined thermal and elastic problems, the objective of 
the inverse problem is to determine displacements, surface stresses, heat fluxes, 
and temperatures on boundaries where they are unknown. The problem of inverse 
determination of unknown boundary conditions in two-dimensional steady heat 
conduction has been solved by a variety of methods [18, 20-25]. Similarly, a sepa-
rate inverse boundary condition determination problem in linear elastostatics has 
been solved by different methods [26]. The inverse boundary condition determina-
tion problem for combined steady thermoelasticity was also solved for several 
two-dimensional and three-dimensional problems [18, 21]. A 3-D finite element 
formulation is presented here that allows one to solve this inverse problem in a di-
rect manner by over-specifying boundary conditions on boundaries where that in-
formation is available. Our objective is to develop and demonstrate an approach 
for the prediction of thermal and elastic boundary conditions on parts of a three-
dimensional solid body surface by using a finite element approach (FEA).  

It should be pointed out that the method for the solution of inverse problems 
to be discussed here is different from the approach based on boundary element 
method that has been used separately in linear heat conduction [24] and linear 
elasticity [26]. 
 
3.1 FEM formulation for thermoelasticity 
 
The Navier equations for linear static deformations u , v , w  in three-dimensional 
Cartesian x , y , z  coordinates are 

( ) 02
22

2

2
=+∇+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂+

∂∂
∂+

∂
∂+ XuG

zx
w

yx
v

x
uGλ  (12) 
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where, 

                             ( )( )νν
νλ

211 −+
= E ,           ( )ν+

=
12
EG  (15) 

Here, X , Y , Z  are body forces per unit volume due to stresses from thermal ex-
pansion, v is the Poisson’s ratio, G is the shear modulus, E  is the modulus of 
elasticity, and λ  is Lame’s constant. 

                                  ( )
x

GX
∂

∂+−= θ∆αλ 23  (16) 

                                       ( )
y

GY
∂

∂+−= θ∆αλ 23  (17) 

                                       ( )
z

GZ
∂

∂+−= θ∆αλ 23  (18) 

Here, α  is the coefficient of three-dimensional thermal expansion and θ  is the 
temperature. This system of differential equations is discretized using the typical 
Galerkin finite element approach [28, 29]. The approach leads to a local stiffness 
matrix, [ ]eK , and a force per unit volume vector, { }ef , which are determined for 
each element in the domain and then assembled into the global system 

         [ ]{ } { }FK =δ  (19) 

After applying boundary conditions, the global displacements are found by solv-
ing this system of linear algebraic equations. The stresses, { }σ , can then be found 
in by differentiating the displacements, { }δ . 
 
3.2 FEM formulation for the thermal problem 
 
The temperature distribution throughout the domain can be found by solving Pois-
son’s equation for steady linear heat conduction with a distributed steady heat 
source function, Q , and thermal conductivity coefficient, k. 

Q
zyx

k =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂+

∂
∂+

∂
∂− 2

2

2

2

2

2 θθθ  (20) 
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Applying the Galerkin finite element method over an element results in the local 
stiffness matrix, [ ]e

cK , and heat flux vector, { }eQ , which determined for each ele-
ment in the domain and then assembled into the global system 

[ ]{ } { }QKc =θ  (21) 

 
3.3 Direct and inverse formulations 
 
The above equations for steady thermoelasticity were discretized by using a 
Galerkin’s finite element method. This results in two linear systems of algebraic 
equations 

[ ]{ } { }FK =δ ,        [ ]{ } { }QKc =θ  (22) 

The system is typically large, sparse, symmetric, and positive definite. Once the 
global system has been formed, the boundary conditions are applied. For a well-
posed analysis (direct) problem, the boundary conditions must be known on all 
boundaries of the domain. For heat conduction, either the temperature, sθ , or the 
heat flux, sQ , must be specified at each point of the boundary. 

For an inverse problem, the unknown boundary conditions on parts of the 
boundary can be determined by over-specifying the boundary conditions (enforc-
ing both Dirichlet and Neumann type boundary conditions) on at least some of the 
remaining portions of the boundary, and providing either Dirichlet or Neumann 
type boundary conditions on the rest of the boundary. It is possible, after a series 
of algebraic manipulations, to transform the original system of equations into a 
system which enforces the over-specified boundary conditions and includes the 
unknown boundary conditions as a part of the unknown solution vector.  

For example, consider the linear system for heat conduction on a tetrahedral 
finite element with boundary conditions given at nodes 1 and 4. 
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 (23) 

As an example of an inverse problem, one could specify both the temperature, sθ , 

and the heat flux, sQ , at node 1, flux only at nodes 2 and 3, and assume the 
boundary conditions at node 4 as being unknown. The original system of equa-
tions (23) can be modified by adding a row and a column corresponding to the ad-
ditional equation for the over-specified flux at node 1 and the additional unknown 
due to the unknown boundary flux at node 4. The result is 



Inverse Engineering      13 

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

s

s

Q
0 
Q
Q
Q

Q0   K   K   K   K
1-  K   K   K   K

0   K   K   K   K
0   K   K   K   K

0      0       0       0       1  

3

2

4

4

3

2

1

14131211

44434241

34333231

24232221

θ
θ
θ
θ

  (24) 

The resulting systems of equations will remain sparse, but will be non-symmetric 
and possibly rectangular (instead of square) depending on the ratio of the number 
of known to unknown boundary conditions. 
 
3.4 Regularization strategies 
 
A regularization method was applied to the solution of the systems of equations in 
attempts to increase the method’s tolerance for measurement errors in the over-
specified boundary conditions. Different regularization methods for the 3-D for-
mulation were given previously [21]. Here we consider the regularization of the 
inverse heat conduction problem.  

The general form of a regularized system is given as [30] 

 { }
⎭
⎬
⎫

⎩
⎨
⎧

=⎥
⎦

⎤
⎢
⎣

⎡
0
Q

D
Kc θ
Λ

 (25) 

The traditional Tikhonov regularization is obtained when the damping matrix, 
[ ]D , is set equal to the identity matrix. Solving (25) in a least squares sense mini-
mizes the following error function. 

( ) [ ]{ } { } [ ]{ } 2
2

2
2 θΛθθ DQKerror c +−=   (26) 

This is the minimization of the residual plus a penalty term. The form of the 
damping matrix determines what penalty is used and the damping parameter, Λ , 
weights the penalty for each equation. These weights should be determined ac-
cording to the error associated with the respective equation. 

The regularization method uses Laplacian smoothing of the unknown tem-
peratures and displacements only on the boundaries where the boundary condi-
tions are unknown. This method could be considered a ”second order” Tikhonov 
method. A penalty term can be constructed such that curvature of the solution on 
the unspecified boundary is minimized along with the residual. 

 minub →∇
2

2
2θ   (27) 

For problems that involve unknown vector fields, such as displacements, Eqn. (27) 
must be modified to the following. 
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 { }( ) minn̂ ub →⋅∇
2

2
2 δ   (28) 

Here the normal component of the vector displacement field { }δ  is minimized 
along the unknown surface. 

Eqns. (27) and (28) can be discretized using the method of weighted residuals 
to determine the damping matrix, [ ]D . 

 [ ] [ ] 2
2

2
2 ubcub K D θθ =   (29) 

In three-dimensional problems, [Kc] is computed by integrating over surface ele-
ments on the unknown boundaries. So the damping matrix can be thought of as an 
assembly of boundary elements that make up the boundary of the object where the 
boundary conditions are unknown. The stiffness matrix for each boundary element 
is formed by using a Galerkin weighted residual method that ensures the Laplacian 
of the solution is minimized over the unknown boundary surface. The main advan-
tage of this method is its ability to smooth the solution vector without necessarily 
driving the components to zero and away from the true solution. 

In general, the resulting FEM systems for inverse thermoelastic problems are 
sparse, unsymmetric, and often rectangular. These properties make the process of 
finding a solution to the system very challenging. One possible approach is to use 
iterative methods suitable for least squares problems. One such method is the 
LSQR method, which is an extension of the well known conjugate gradient (CG) 
method [31]. The LSQR method and other similar methods such as the conjugate 
gradient for least squares (CGLS) solve the normalized system, but without ex-
plicit computation of [ ] [ ]KK T . These methods need only matrix-vector products 
at each iteration and therefore only require the storage of [ ]K  so they are attrac-
tive for large sized models. However, convergence rates of these methods depend 
strongly on the condition number of the normalized system that is the condition 
number of [ ]K  squared [32]. Therefore, solver performance degrades significantly 
as the size of the finite element model increases. Convergence can be slow when 
solving the systems resulting from the inverse finite element discretization since 
they are naturally ill-conditioned problems. 
 
3.5 Numerical results 
 
The accuracy and efficiency of the finite element inverse formulation was tested 
on several simple three-dimensional problems. The method was implemented in 
an object-oriented finite element code written in C++. Elements used in the calcu-
lations were of hexahedral shape with tri-linear interpolation functions. The linear 
systems were solved with a sparse LSQR method [31] with column scaling. 

A simple test geometry was chosen to clearly demonstrate the approach. The 
test case involved a multiply-connected domain composed of an outer cylinder 
with length 5.0 m and diameter of 2.0 m. There are four cylindrical coaxial holes 
that pass completely through the cylinder, each with a diameter of 1.25 m. The 
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material domain was discretized using hexahedral computational mesh composed 
of 1440 elements and 1980 nodes. The inner and outer boundaries each had 440 
nodes. For this multiply-connected geometry, there is no analytical solution, even 
if constant temperature boundary conditions are used on the boundaries. 

This case considers thermal and elastic boundary conditions that vary in all 
coordinate directions thereby creating a truly three-dimensional example. The all 
interior boundary conditions change linearly along the z-axis. The exact values 
used are given in Table 1. On the outer cylinder the displacement was set to zero 
and a fixed temperature of 10 C was specified. Adiabatic and stress free conditions 
were specified at the ends of the cylinder. The following material properties were 
used: PaE 0.1= , 0.0=ν , 12100.2 −−×= Kα , 11  0.1 −−= KmWk .  
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Fig. 4. Inversely computed isotherms on x - 
y plane at z = 0.5 m. 

 

Fig. 5. Inversely computed displacement 
magnitudes on x - y plane at z = 0.5 m. 
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Fig. 6. Inversely computed isotherms on x - 
y plane at z = 2.5 m. 

 

Fig. 7. Inversely computed displacement 
magnitudes on x - y plane at z = 2.5 m. 

 
 
 

The inverse problem was generated by over-specifying the outer cylindrical 
boundary with the double-precision values of temperatures, fluxes, displacements, 
and surface tractions obtained from the forward analysis case. At the same time, 
no boundary conditions were specified on the inner cylindrical boundaries. No er-
rors were used in the over-specified boundary data. 
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Table 1. Temperature and pressure boundary conditions for interior surfaces. 
 

 Hole ( )CTz °−0  ( )CTz °−5  ( )PaPz 0−  ( )PaPz 5−  

A 5.0 2.0 2.0 1.0 
B 6.0 1.0 2.0 1.0 
C 7.0 1.0 2.0 1.0 
D 8.0 2.0 2.0 1.0 

 

Regularization was used with 51058 −×= .Λ . Our experience indicates that a good 
value for the damping parameter, Λ , is geometry and boundary condition de-
pendent. Currently, the damping parameter is chosen based on experience by first 
choosing a small value and gradually increasing it until the numerical oscillations 
in the unknown boundary solution are removed. 

The linear elasticity system was solved using the LSQR method with column 
scaling. The LSQR iterations were terminated after the Euclidean norm of the re-
sidual of the normal system was less than 61001 −×. . In this example 16805 LSQR 
iterations were required, which consumed about 10 minutes of computing time on 
a Pentium 4 workstation. 

The average error between the inverse and direct solutions on the unknown 
boundaries was 0.02% for temperature and 5.6% for displacement. The direct and 
inverse temperature contours for two sections of the domain are shown in Figures 
4 and 6. There is good agreement on all sections between the directly and in-
versely obtained isotherms. The direct and inverse constant displacement magni-
tude contours for three sections of the domain are shown in Figures 5 and 7. For 
all sections there is a noticeable difference in the direct and inverse contours in the 
regions far away from the outer boundary. However, the inverse solution does cor-
rectly capture the direct solution in a qualitative sense. 

This thermoelastic problem was also solved using the other regularization 
methods over a wide range of damping parameters. In those cases the error in the 
inverse solution was much higher and did not match the direct solution even in a 
qualitative sense.  

Improving the quality of the damping matrix for the displacement field could 
increase the accuracy of the displacement. The current damping matrix from Eqn. 
28 only includes the normal component of the displacement. Smoothing the tan-
gential components as well could make further improvements. In addition, the cur-
rent scheme depends on accurate surface unit normal vectors, n̂ , which are diffi-
cult to compute accurately at the nodes of flat elements on curved surfaces. 
Further reductions in errors could possibly be made by implementing methods that 
compute the surface normals with a high degree of accuracy. 

Reasonable results were obtained by LSQR with column scaling in less than 
20,000 iterations for displacements and 3,000 iterations for temperature. Although 
many iterations are required with the LSQR method, it requires much less memory 
and is more robust than sparse direct solvers, such as QR factorization, for rectan-
gular systems of algebraic equations. 
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This formulation can predict the temperatures and displacements on the un-
known boundary with high accuracy using a proper regularization. It was shown 
that the FEM formulation could accurately predict unknown boundary conditions 
for multiply-connected domains when a good regularization scheme is used. Fur-
ther research is needed to develop better regularization methods so that the present 
formulation can be made more robust with respect to measurement errors and 
more complex geometries. Further research is also needed to improve regulariza-
tion for inverse problems in elasticity over complicated domains. 

 

4  Inverse Design of Alloys for Specified Properties 
Our research recently concentrated on the inverse method in predicting chemi-

cal composition of steel alloys. This formulation allows a structural design engi-
neer who designed a machine part to ask a materials scientist to provide a precise 
chemical composition of an alloy that will sustain a specified stress level, specσ , 

at a specified temperature, specT , and last until rupture for a specified length of 

time, specθ . The inverse problem can be then formulated as a multi-objective op-
timization problem where a number of objectives are simultaneously minimized 
(Table 2). We have used IOSO multi-objective optimization algorithm [33, 34] 
which consists of two stages. The first stage is the creation of an approximation of 
the objective function(s). Each iteration in this stage represents a decomposition of 
the initial approximation function into a set of simple approximation functions 
(Fig. 1) so that the final response function is a multi-level graph [35, 36]. The sec-
ond stage is the optimization of this approximation function. This approach allows 
for corrective updates of the structure and the parameters of the response surface 
approximation. The distinctive feature of this approach is an extremely low num-
ber of trial points to initialize the algorithm. 

The result is not one, but a number of alloys (Pareto front points) each of 
which satisfying the specified properties while having different concentrations of 
each of the alloying elements. This is very practical because the user, when decid-
ing to order an alloy, can use the alloy which is made of the most readily available 
and the most inexpensive elements on the market at that point in time. 

In particular, the objective was to determine chemical composition(s) of high 
temperature steel alloys that will have specified (desired) physical properties. De-
sign variables were concentrations (percentages) of each of the following 14 alloy-
ing elements C, S, P, Cr, Ni, Mn, Si, Mo, Co, Cb, W, Sn, Zn, Ti. 

 
Table 2. Formulations for ten simultaneous objective functions in steel alloy design. 

 

 Objectives (minimize simultaneously) 
Number of 
objectives 

Operating  
Stress 

Operating 
temperature 

Time until 
rupture 

Low cost alloy 
(minimize) 

10 ( )2
specσσ −  ( )2

specTT −  ( )2
specθθ −  Ni, Cr, Nb, 

Co, Cb, W, Ti 
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Multicriteria optimization of material composition 
for preset properties (inverse problem) using method #3
Number of variables (alloying elements): 14.
Objectives: Cr and Ni concentration.

This approach allows us 
to vary the chemical
composition for the
same pre-specified 
multiple properties of 
the alloy.

24 28 32 36 40
Cr, %

20

30

40

50

N
i, 

%

time=8000
time=7000
time=6000
time=5000

Constraints: 
stress=4000 psi; 
temperature=1800 F; 
time=preset time.

 
 
Fig. 8. Inversely designed Pareto optimal concentrations of Ni and Cr as a function of time 
–until-rupture constraint. 
 

 
 
Fig. 9. Allowable variations of concentrations of Si and Co with respect to Cr when specify-
ing stress (230 N mm2), temperature (975 C) and time-to-rupture (5000 h). 
 

Evaluations of the objectives were performed using classical experiments on 
candidate alloys. In other words, we used an existing experimental database. The 
results (Fig. 8) demonstrate that it is possible to create a large number of alloys 
having different compositions so that each of them will satisfy the specified multi-
ple properties. This does not mean that concentrations vary smoothly for these al-
loys (Fig. 9). It should be pointed out that these are the visualizations of only two 
of the 14 chemical elements since the results of this multiple simultaneous least-
square constrained minimization problem cannot be visualized for more that two 
alloying species at a time. Also, when specT  and specθ  progressively increase, the 
feasible ranges for varying the concentrations reduce rapidly [35].   
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