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A method is developed for an a posteriori iterative improvement to an arbitrary computational grid.
Local corrections to the coordinates of the grid points are used to form a global cost function which is
minimized with respect to a single parameter. The local corrections and cost function can be
constructed to maximize the local smoothness and/or the local orthogonality of the grid. The
advantage of this method is that it allows the user to generate an initial grid using any inexpensive
method. and then the grid can be improved with respect to both orthogonality and smoothness.

This technique was used to generate grids for a finite element alternating-direction method which
uses curved clements. A sample transient diffusion problem was solved on a series of grids to
investigate the sensitivity of the curvilinear alternating-direction method to grid orthogonalization. The
initial grid was highly nonorthogonal and each grid produced by the automatic grid generation program
was smoother and more orthogonal.

This work shows that the adaptive grid program can be easily used to generate nearly orthogonal
grids and it shows that the curvilinear alternating-direction technique is not highly sensitive to
nonorthogonality of the grid. It is shown that as long as a grid is somewhat reasonable, the
alternating-direction method will perform quite well.

1. Introduction

Finite element methods are routinely used to model the solution of parabolic partial
differential equations. Finite element techniques are extremely versatile and can be used easily
on curved regions with very general boundary conditions. This is the primary reason that finite
element methods have become extremely popular for modeling problems in solid mechanics.
heat transfer, fluid mechanics. and structural dynamics. In 1971, Douglas and Dupont {1].
motivated by previous finite difference work, formulated a finite element alternating-direction
procedure to solve nonlinear parabolic problems posed on rectangular regions with uniform
grid spacings. This method can solve large multidimensional problems as a series of one-
dimensional problems. The storage and execution requirements are low since they are
associated with one-dimensional problems. Dendy and Fairweather [2] extended these
methods to unions of rectangles, and Hayes [3-7] generalized this method to nonrectangular
regions composed of isoparametric finite elements. In this formulation, the Jacobian of the
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isoparametric map was obtained at the element nodes by a *‘patch approximation” and the
alternating-direction parameter, A, approximates the diffusion and the Jacobian.

The purpose of this paper is to investigate how sensitive the curvilinear alternating-direction
method is to nonorthogonal grids. In this study, an automatic computational grid generation
program was used to generate a series of optimized grids, each of which had increased
smoothness and increased orthogonality. The final grid was a rectangular, uniform gnd. A
transient diffusion problem was solved on each of the grids using both the standard finite
element method and the curvilinear alternating-direction technique. Errors on each of the
grids are compared in order to analyze the sensitivity of the alternating-direction method to
grid orthogonalization.

2. Optimized computational grid generation

Despite a wide variety of existing methods for automatic boundary fitted computational grid
generation [8], it is often desirable to maintain maximum local grid orthogonality and
smoothness in the variations of the grid cell sizes.

Recently, a new method has been developed for arbitrary two-dimensional [9] and
three-dimensional [10] configurations that is capable of efficiently and reliably generating a
grid, which is optimal in the sense of minimizing local nonsmoothness and nonorthogonality
while keeping the boundary grid points fixed. Our optimal grid generation method has certain
conceptual similarities with the existing variational grid generation method {[11]. In the
variational method, two functionals are introduced that provide measures of grid smoothness

L= [ 1w, €7 + (9, nD7 ax dy 0

and grid orthogonality

L= 1w, (v mir aray. @)

Here. J = ¢ n, — € is the Jacobian of the transformation from the (x, y) physical space to
the uniformly discretized (¢,7) computational space. The Euler-Lagrange equations of
variational calculus are then applied to minimize the total cost functional

IEn)=al,+(1-a)l . (3)

where a is a scalar weighting parameter (0 < a <1).

Our optimal grid generation method differs from the variational method in that, instead of
using straightforward finite difference representation of the partial derivatives in (1) and (2),
the following approximations are used to evaluate local grid smoothness and orthogonality.
Consider the local problem of grid optimization for a master cell consisting of four neighbor-
ing elementary cells numbered 1, 2, 3, and 4 as shown in Fig. 1. Define the position vectors
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Fig. 1. Position vectors for a two-dimensional problem.

Fior i =y, =X, DAY, =y )0 (4)
ri.j+1=(xi.j+1_xi.j)i+(yi.j+1_y1,j)jv (5)
Fioy = =X Dy =y ) (6)
ri‘;q:(xi,jq_xi.j)i+()’,‘,,—1*)’i./)j» (7)

where i and j are unit vectors in the x- and y-direction, respectively. The quantitative measure
of local grid smoothness or change in cell area is given by

o, =(A —A) +(A, - A+ (A, - A)V +(A, - A). (8)
where A, is an approximate measure of the area of the kth elementary cell, e.g.,

A1=|ri+l.jxri.j+]" (9)
The local measure of grid orthogonality is given by

o
<

2
pi;= (r1+1<_7 ry ;+}) +(r,. j=1" r1+1.j)

+ (ri—l.j"i. ;‘—1)2 + (rz._/'+l ’ ri—].j)- . (10)

Corner nodes are used to define area and orthogonality even for cells with curved sides.
Then we define the total cost function, F, as

Fzzg[api‘j-%(l—a)cr”]. (11)

The minimization problem can be restated in terms of the vector z = (x, y) of length 2pg = 2N



144 L.J. Hayes et al., Grid orthogonalization for curvilinear techniques

that contains the x- and y-coordinates of the grid points in a natural ordering. Thus, one must
find the value z = z* such that F(z*) is a minimum. Here, the Fletcher—Reeves conjugate
direction procedure [12] was used to find F(z*) from

2D = M g M (12)
az(n) - _VF(Z(H)) + B(n)az(n—l) , (13)
B =|VFOPIWF" D (14)

The parameter w in (12) is the so-called line-search parameter and it is given by

w = arg [min ¥(w)] (15)
when the scalar function ¢(w) is given by

Ww)=F(z" V)= Fz" + wdz"). (16)

The parameter w is determined with minimal effort using concepts based on the nonlinear
minimal residual method [13] for accelerating the iterative solution of differential systems. By
simple substitution of (12) into (16), it follows that y(w) is a fourth-degree polynomial
function in terms of w. To determine the value of  that minimizes y(w). one must find and
test the three roots of the cubic polynomial obtained from

dy/dw=0. (17)

The root that produces the minimum in ¢ is used to update the grid point coordinates.
Our method of grid generation using optimization has certain distinctive advantages over

the method based on variational calculus. With our method. the initial grid can even be

overlapped, that 1s, it can have regions of negative Jacobians. This situation very frequently

o e e
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Fig. 2. (a) Initial two-dimensional grid with overlapped grid cells. (b) Grid after two iterations with an optimizer.
(c) Grid after twenty iterations with an optimizer.
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Fig. 5. Grid surfaces after twenty iterations with an optimizer.

occurs in three-dimensional problems involving highly irregular configurations. Figures 2 and
3-5 clearly demonstrate the capability of our optimal grid generation method to unravel
two-dimensional and three-dimensional grids that were initially useless and to recover a grid
that has maximum possible local smoothness and orthogonality.

3. Curvilinear alternating-direction method

Complete details of the finite element alternating-direction method will not be given here,
as they can be found in other references [4-7]; however, the key features of the method will
be summarized. The alternating-direction method can be used to solve the transient differen-
tial equation

c(x, y)ou/ot —V- k(x, yVu + b(x, y)u = f(x.1) on {2, (18)

on a domain {2 subject to either Dirichlet, Neumann. or mixed boundary conditions on the
boundary of £2. The standard backward-difference finite element method used to approximate
(18) is

(c(u"*' = u")iAt v), + (kSu"" ' Vu), = (f". vy (19)

for all tensor product test functions v in the Sobolev space H'(£2). Note that the gradient. V,
in (19) is with respect to the physical (x, y) coordinates of ). The alternating-direction
method can be viewed as a perturbation of the left-hand side of the backward-difference
equation (19) given by
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(™™ = u") AL v) o + (AT = u™), Vo) + AP (8" — u™)/a¢am, 8°v/a€am)
=(f"" vy, = (k" V), . (20)

The gradient, V, is taken with respect to the master coordinates (é.m)and A=A(&,m)is a
Laplace-modified type parameter which approximates the diffusion term as well as the
Jacobian of the isoparametric transformation. The higher-order, cross-derivative term has
been added so that the coefficient matrix will factor into a convenient form [3-6].

The factored matrix problem has several attractive features [4, 7]. Problems which involve
either two or three space dimensions are solved as a series of one-dimensional finite element
problems. Therefore, both the storage requirement and the execution times increase linearly
with the number of unknowns in the grid. Table 1 shows the storage requirements for tensor
product, quadratic isoparametric elements in two and three space dimensions. The cases
considered here correspond to isoparametric grids which are logically equivalent to rectangu-
lar grids with equal numbers of elements in each direction. In the alternating-direction
method, the one-dimensional problems result in a pentadiagonal system for quadratic
elements, so for each one-dimensional problem only five diagonals need to be stored. For the
standard finite element technique. a band storage technique was used. and the storage
increases with O(N'"*) for two-dimensional problems and O(N" ") for three-dimensional
problems. Table 1 shows that the savings in storage are substantial when using the alternating-
direction method, even for relatively small problems.

Figure 6 shows the total time required on a Cray 1 to take 1.000 solution steps for the
standard finite element backward-difference technique and 2.000 steps for the alternating-
direction method using quadratic finite elements in two and three space dimensions.

In order to offset the error which was induced by adding the perturbation term to (19). the

Table 1
Storage comparisons for quadratic tensor product elements
Alternating- Finite element
Number of Number of direction band storage
elements nodes (words) (words)
2 Dimensions
9 49 392 539
25 121 968 2904
64 289 2312 10404
81 361 2888 14440
121 529 4232 25392
225 961 7688 61504
324 1369 10952 104044
484 2025 16200 186300
900 3721 29768 461404
3 Dimensions
8 125 1250 7750
27 343 3430 39102
64 729 7290 132678

125 1331 13310 354046
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Fig. 6. Solution time for a linear problem. (a) Two dimensions. (b) Three dimensions.
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time step, At, for the alternating-direction method was half as large as the one used for the
backward-difference method. In the alternating-direction method, the pentadiagonal matrices
are stacked and solved in a vector mode, and the standard finite element equations are solved
using a LINPACK band solver. The computation rates for the alternating-direction method are
O(N). and the savings in computation times will increase as the problem size increases. Figure
7 shows corresponding timing data for a nonlinear problem where an average of three
iterations is taken per time step. An iMsSL routine was used for the solution of the standard
finite element equations because it is superior to the LINPACK routines for the decomposition of
a matrix which must be done on each iteration. Again, the differences in computation speeds
will increase with the problem size. This data was obtained using a vector computer; however,
similar ratios of computation time would be obtained on sequential machines.

4. Numerical results

It is evident that the alternating-direction method offers certain computational advantages
over standard finite element techniques. However. when using curvilinear grids. one might be
concerned with the sensitivity of the alternating-direction method to the degree of grid
nonorthogonality and nonsmoothness. In order to address this question. the following
problem was solved numerically:

du/or—Au=x(x—Dy(y—1)=2tfy(y — 1)+ x(x — 1] . (21)

on a unit square where u is prescribed to be zero on the boundary. The analytic solution for
this problem is given as

u=tx(x—1Dy(y—1). (22)

This test problem has the advantage that on a rectangular grid the standard finite element
backward-difference method can match the analytic solution exactly. Therefore. it is possible
to investigate the inherent error due to the perturbing equation (21) so that it will factor into
alternating-direction form. One can then look at errors on the other computational grids to
investigate the additional error that is introduced due to curvilinear. nonorthogonal, and
nonsmooth grids.

Figure 8(a) shows the original finite element grid which was input to the optimal grid
generation program. It i1s a strongly nonorthogonal grid with a high degree of curvature in
each of the elements. Figure 8(b) shows the grid which was produced from the optimal grid
generation program in one iteration. Although this grid still has elements which are quite
nonorthogonal, it 1s a great improvement over the initial grid. Figures 8(¢) and 8(d) show the
grids produced after three and five optimization iterations. respectively. Figure 8(e) shows the
grid produced by the optimal grid generation program after fifty iterations. It is a uniform
rectangular grid. The optimization procedure is demonstrated in Figs. 9 and 10, which show
the decrease in the objective functions during the iterative process for the two grid sequences
shown in Figs. 2 and 8. respectively. There is a significant decrease in the objective functions
during the first few iterations. Table 2 shows the errors for both the standard finite element
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Fig. 8. (a) Original grid. (b) The grid after 1 iteration of smoothing and orthogonalization. (c) The grid after 3
iterations of smoothing and orthogonalization. (d) The grid after 5 iterations of smoothing and orthogonalization.
(e) The grid after 50 iterations.

method (FEM) and the alternating-direction method (ALT-DIR). The analytic solution is
linear in time and the finite element backward-difference method can match the transient
behavior exactly. Therefore, all of the errors displayed in Table 2 for FEM are independent of
the time step, Ar. In ALT-DIR, the perturbation term which was added to (21) corresponds to
adding

AN 8 ul d19x7oy” (2

1)

)

in the differential operator. For the problem considered here. (21). the ALT DIR perturba-
tion term corresponds to 4Ar°A° which is nonzero. Table 2 contains the H® Sobolev norm.
llell,. which measures the error in a solution. the H' Sobolev norm. ||e|,. which measures the
error both in the solution and in the gradient. and the infinity norm error. |le]|.. which
measures the maximum error in the solution at the nodal points. Ten time steps were taken
with Az = 0.1 and 100 time steps were taken with Ar=0.01. On the uniform rectangular grid
(50 iterations). the FEM calculates the analytic solution to machine accuracy on the Cyber 175
as expected. The values given for the ALT-DIR on the uniform grid indicate the inherent error
which was introduced by the perturbation term which was added to (21). The errors for
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Fig. 9. Measures of grid quality for the grid shown in Fig. 2.

Table 2
Errors using finite element and alternating-direction methods
Grid Method At ltell,, el llell.
Original FEM 0.1 0.57E-3 0.14E-1 0.17E-2
ALT-DIR 0.1 — — —
0.01 — — —
After 1 FEM 0.1 0.23E-3 0.81E-3 0.40E-3
iteration ALT-DIR 0.1 0.93E-2 0.49E-1 0.17E-1
0.01 0.60E-3 0.85E-2 0.13E-2
After 3 FEM 0.1 (.81E-4 0.32E-2 0.55E-4
iterations ALT-DIR 1.1 0.91E-2 (.42E-1 0.17E-1
0.01 0.44E-3 0.37E-2 0.82E-3
After 8 FEM 0.1 0.88E-4 (0.24E-2 0.63E-4
iterations ALT-DIR 0.1 0.92E-2 (.43E-1 0.16E-1
0.01 (L.44E-3 0.39E-2 0.83E-3
After 50 FEM 0.1 0.52E-12 0.10E-10  0.10E-9
iterations ALT-DIR 0.1 0.91E-2 0.42E-1 0.16E-1

(uniform grid) 0.01 0.39E-3 0.18E-2 0.74E-3
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Fig. 10. Measures of grid quality for the grid shown in Fig. 8.

Ar=0.01 indicate that this error can be reduced by taking a smaller time step. The errors
could also be reduced by redefining the spatial grid.

The FEM errors produced on the original grid indicate the error which is inherent in the
finite element method for that grid. The errors for Ar = 0.01 indicate that this error can be
reduced by taking a smaller time step. The alternating-direction method could not be used on
the original grid with any time step as it produced highly oscillatory, divergent results. A
striking result is evident when one compares the error using ALT-DIR on the grids produced
after 1. 3. and 5 grid optimization iterations. The errors are essentially the same on all three
optimized grids and they differ very little from the errors produced on the uniform rectangular
grid. On each of these grids, the difference between the FEM and the ALT-DIR errors is the
extra error induced by the alternating-direction perturbation. One can deduce from these
results that the alternating-direction method is not highly sensitive to grid orthogonalization as
long as a somewhat reasonable grid is used. Therefore, one does not need to devote an
excessive amount of time to generating smooth. orthogonal curvilinear grids to be used by the
alternating-direction method.
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5. Conclusions

An automatic optimal grid generation program is used which can accept any initial grid and
iteratively improve it using a cost function which can be weighted in terms of grid smoothness
and grid orthogonality. This program is very easy to use and is very effective in removing
nonsmoothness and nonorthogonality from a computational grid.

This program was used on an original grid which was highly nonorthogonal to produce a
series of optimized computational grids. The alternating-direction and finite element methods
were applied to an example problem on these grids in order to compare the resulting
numerical errors. This comparison study shows that the curvilinear alternating-direction
method is not highly sensitive to grid smoothness and grid orthogonality. One simply needs to
input a grid which is somewhat reasonable, and the alternating-direction method will produce
solutions that are essentially as good as if the method had been implemented on a uniform
rectangular grid.
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