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ABSTRACT

A new exact analytical model was derived for
the irrotational, unsteady flows of compressible
fluids when effects of heat conductivity and
molecular viscosity are allowed. This new model
satisfies conservation of mass, momentum, and
energy exactly. 1In addition, it satisfies '
physical irrotationality conditions. Compared to
the classical small perturbation Viscous-

‘Transonic (V-T) equation, the new Physically
"Dissipative Potential (PDP) equation contains a
number of additional terms that are highly
nonlinear. The new model is derived in a general
vector operator form and in a scalar canonical |
form. :

INTRODUCTION

An exact analytical model for nondissipative
irrotational inviscid heat nonconducting
compressible fluid flow is the Full Potential
Equation (FPE). During the late forties, Cole
[1] derived a new analytic model for potential,
steady, two-dimensional flows by partially
incorporating heat conductivity and secondary
viscosity effects. During that period
linearization methods based on small perturbation
theory were very popular. This is a possible
reason why this original Viscous-Transonic (V-T)
equation retains only the most essential physical
nonlinearities. Actually, as clearly stated in
the works of Sichel [2,3], V-T equation
represents a combination of the classical
transonic small perturbation equation which
contains the most essential nonlinearities of
inviscid flows and the Burgers equation which
contains the most essential linear dissipation
effects. Ryzhov [4] used physical arguments to
justify small perturbation linearization
processes utilized in the derivation of V-T
equations for planar and axisymmetric flows.
These authors succeeded also in obtaining
analytic solutions for V-T equation governing
transonic flows about thin airfoils, thin
projectiles and through shock waves. Chin [5]
successfully integrated the V-T equation
numerically for a steady two-dimensional
transonic flow around an airfoil.
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The objective of this work is to derive an
exact Physically Dissipative Potential (PDP)
equation without resorting to linearizations.
Thus, our intention is to create a physicél model
that is more complete than the classical V-T
equation and the FPE and which is based on a
single dependent variable.

CONSERVATION LAWS

Equation of state for a thermally pérfect
gas ‘
p = pRT (1)
links thermodynamic static pressure, p, density,
p, and absolute temperature, T. From Eq. | it
follows that |

lnp = lnp + InR + InT ‘ (2)

For a perfect gas R = constant. Then, tdtal time
derivative of the above equation becomes '

1pp 1 1 DT
pDt p Dt TDt (3)
Mass conservation can be expressed as
p(V-;) = - Dp + & (4)
Dt

. ‘
where m designates the rate of generation of mass
3 ‘

per unit time per unit volume and V is tﬂe local
fluid velocity vector. After introduction of Egq.
3 and Eq. 1, the mass conservation equation

becomes
p(V-;)=%%-é:f%%+r;\ (5)
Energy conservation can be expressed as
pg%——g—[::={>+v'(kVT)—V'ir
+6—:a<u+§-;—;:1 (6)



where u is the specific internal energy, h is the

specific enthalpy, k is the heat conduction
coefficient of the fluid assuming Fourier's law,

.
-

¢ is the viscous dissipation function, q_is the
time rate of radiation heat flux vector, Q is the
time rate of internal heat generation.

The viscous dissipation function ¢ is defined in

its vector operator form as

# = 2u{Ve[Vv » I)V] + %(Vx;)z - (;-V)(v-;)}

-

+ A(vev)? N

where p is the shear viscosity coefficient and A
is the secondary viscosity coefficient. For
calorically perfect gases

h=CT=u-+ E (8)

where the specific heat at constant pressure, C,,

" 1s constant. Therefore, Eq. 6 divided with CpT
can be rewritten as
p DT _ _l_ Dp _i_
T Bt CT Dt + C [$ + Ve(kVT)
p P
b . » VeV
- Veq_ + Q- mh - 5] (9
fSubstitution of Eq. 9 (energy conservation) in
- Eq. 5 (mass conservation) results in
) = (ol _LyDp,
p(vev) = (g RT) bt * €T 'r [2+9e(kVT)
P P
- Vg + Q- m (h - LY )em (10)
r 2
Note that
Y 1
1 ® " (YRT YRT 2 (n
p a

where Y = C,/C,, and a is the local isentropic
speed of sound. Then, Eq. 10 becomes

p(Vov) = - 15 2e Y1 ig + ve(uvT)
a

-veq +Qq-mh -5 A2
Momentum conservation can be expressed as

-

- p%% - %; + (va(pv) ;)

-

=Vx [p(Vxv] + V[A(VeV)]} (13)i

-

where b is the body force per unit mass.

Pre-multiplying Eq. 13 with V and using the
vector identity

- -
- - -

(Ve V)V = 9(¥ : Yy - vx(vxv) (14)

it follows that the total differential

D 3 N
'D—%=—P-+(V-V)p

at (15)

can be written as

-
- -

g% = gt + p[veb - v-—g—! - ey )]

+ v-(ztv(pvy \7)4- Vx[}l(Vx:/)] + v{x(v-;)])

TV'(Vx(VxV))‘ - @ Vev (16)

' Hence, mass conservation (Eq. 12) which already
. includes energy conservation, becomes after

inclusion of momentum conservation (Eq. 16) the

. following expression

1 8p _ 1 .3_" -1_

p { 7 3¢ 5 Ve * [(Ve v) (VoV)
pa a a

v-v . e e -

3)1) = 23 (plVeb + Ve(vx(vav)) ]+
a

v-[z}v(w)v)a-Vx (p(¥xV)) + T(A(VeV))]

. - -

= (Y-1)[#+V(KVT) = Veq_ + Q - m(h = “7]

+ m(1+M%) an

Here, the local Mach number is defined as

=|v]|/a. Since a2=YRT, note that
Al a - B v awd) -
a
<Y1 y-1,2 2 18
m [- YRTCPT + 3 MT + 1 + M7] (18)
Also, since
¢ =R (19)

p Y-1

it follows that Eq. 18 can be rewritten as

i%i (-mch - E91 + aand) =l 3 o
Hence, mass conservation (Eq. 17) can be written

as



-

1_3p .1_.& w-oLl .
p{-——-a—ZVa+[(VV 2(vv)

pa a a

- -

v'V)]} = ; [plved + Ve (VX(VxV))]
a

R V'[Z(V(uV)Y)d-Vx(p(VxV)) + VAN ])

+ —;—l {(#+474(KVT) - Veq_ + Q) + mMz(lt—l

a

-

Notice that Eq. 21 is an exact formula for mass

conservation that also implicity satisfies exact
momentum and energy conservation equations for a
calorically perfect gas.

IRROTATIONALITY CONDITION

Gibbs relation expressed in its vector
operator form as

TVs-Vh=-%Vp (22) .

can be expanded by adding V(!%X) to both sides,
that is,

- - - -

VeV 1
TVs - V(h + 3 )y = —(;

Introduction of Eq. 14 in Eq. 23 results in an
equation similar to the Crocco-Wazsonyi [6]
equation.

-

TVs~-Vh = - Vx(VxV) + v _ b
[+ at

-

- %{zgv(pv)v)- x5 (TxV) ]

+ VIA(VeV)] - mV) (24)

This equation is valid for unsteady flow of a
calorically perfect compressible, heat
conducting, viscous fluid under the influence of
body forces and allowing for mass sources and
sinks.

- -

Here, ho = h + vy is the stagnation enthalpy per

2

unit mass. Assumption that the stagnation
quantities are constant implies that the flow is
homoenergetic (Vh, = 0).

If body forces and mass generation are
neglected and the flow is assumed to be

-

irrotational (V x V = 0), then Eq. 24 becomes

u{mﬂ’m‘h WE}JM

2n’

woevsh) @)

1] v V V)
we - 2 K gttty oo
ta#w..x/a"ufwh.
This means that the flow can be potential
(Vv = 9¢), although non-isentropic and that the
entire flow field can be described with a.single
variable called the velocity potential fumction
¢. This general concept of non-isentropie
potential flows was clearly described by Klopfer
and Nixon [7]. Actually, "the assumption of
irrotational flow, which is a key step in the
present development, cannot be rigorously
justified a priori" [3]. Thus, the following
derivation is "based on the concept of a fluid
which has only compression viscosity so that it
can still slip over the airfoil surface as in
inviscid flow" [3].

THE PHYSICALLY DISSIPATIVE POTENTIAL FLOW
EQUATION

If coefficients @, A, and k are assumed
constant, then neglecting body forces and mass
generation, momentum conservation (Eq. 13)
becomes

- - -

v 1
3¢ ¢ V(——~) = - EVp + = {prv(;)v)

e {Vx (VxV)] + V[A(VeV)]]} (26)

Since the flow is assumed to be irrotational

-

(VxV = 0), using the vector identity

- - -

92y = Y(VeV) - Vx(VxV) (27)

in Eq. 26 results in

av vev, 1 1 o o
S+ V() = pr + pV[Zp(V V) + A(VeV)]

(28)

. Hence, with the assumption of a potential flow

(V = v¢) this equation becomes

i s

- %v[p - (2pra)v34) (29)

. After taking partial derivative of both sides

with respect to time and dividing both sides with
aZ it follows that
2
__i 3_ (_élgi)] =
ot

2 3 2

1 §_ + v2 30
3 3t [(2u+A) ¢] (30)
pa pa
Finally,
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+ 50 (vé.vé?] * =5 3% [(2u+r)V7 ¢} (31)

pa
should be substituted in Eq. 21 when the flow is
irrotational.

Hence, the general vector operator form of
mass conservation (Eq. 21) in the case of an
irrotational flow of a calorically perfect gas
allowing for heat conduction, shear viscosity,
and secondary viscosity (but neglecting body
forces, radiation heat transfer, and mass and
heat sources) becomes

2
p{V2¢ _ _% [é_% + QS%élzi) + (V¢'V) (Zil!é)ﬁ
a” 3t t 2
1 2
= - =5 Y {Vi(2u+r)vi4]}
a

+ Y;zl {2p[v-((v¢-v)v¢)v¢-v(v-v¢)]+A(v2¢)2) ;
a ;

Y-1 1 3 2 :
+ 2 Ve (kVT) - 2 (2per) Fp V é (_32);

CANONICAL FORM

The above equation can be expressed in a
locally streamline aligned [8] Cartesian
coordinate system (s, m, n). Here, s is the
streamline direction and n and m form a plane ‘
perpendicular locally to the streamline. The !
velocity components normal to the streamlines are |
zero ($p=¢,<0) by definition and a2=YRT. By '
introducing the coefficient of longitudinal [9] |

viscosity u"=2p+A, it follows that Eq. 32

transforms to

1

Pl dntdnn) = 2 (e + 20,4,
a
2 + 2 +
1 3 3 m
- ;E (¢s 3 T 4’m am * 4'n an)( 2
" ._}‘_.
= ——p (¢sss+¢mms ¢nns) (¢sst émmt ¢nnt)

Y-1, 2 2 2
¥ ;i—.“ (¢SS +¢mm +¢nn +2¢ss+mm+2¢ss¢nn

mn §s mm

Y-1 2 2 2
+2¢mm¢nn) * ;i—au(¢sm +4)sn o 05t

Y-1 9 " 3" 9 "
o * 77 (G5 an®m ¥ an%

dm m

. %‘Ft)s;s + !(W(P)mém + %(-r')n e 1}

- d>ssd’nn - ¢mm

(33)

Here, eg, ey, and e, are mutually orthogopal unit
vectors in s, m and n direction respectively.
Since all quantities are normalized with their
critical thermodynamic values, the 1sentrbp1c
speed of sound can be expressed as

=82 = EE = I%l N l%l [¢52 * ¢m2 * ¢n2] (34)
A%
Then
2
(1) = =Dy, * b * Aoy 09
2
(802 = =Dy * b * b 30
2
(a )n = _(Y-I)(¢s¢sn * ¢m¢mn * ¢n+nn) (37
Hence,
O T O I LIRS Y SR T
ss S8 s'sss ms
2
* ¢m¢mss * 4’ns * ¢n¢nss) (38)
R FER O D17 YL SV SR
mm sm s ' smm mm
2
+¢m¢mmm * ¢nm * ¢n¢nmm) ‘ (39)
2 2 2
(a )nn = _(Y_1>(¢sn +¢s¢snn * *mn ‘
2
A S T . (40)
ﬂ‘
Since ¢y = ¢, = 03 then;mass conservation (Eq.

33) can be writte;mm@
I

§ -0, - 0 e e (B 2T}

_{- —% te o 1)_] (¢SSS d’smm + ¢snn)

" 2 2 2
+:§_ " - Cp)(¢ss * ¢mm * +nn )

-1 " _
+2;5‘ (u 2“)(¢ss¢mm ¢ss¢nn M +mm¢nn)
Y-1 k 2 2
Tz T W e ten” )
W/I/r% tost * fme’ %m’}
(41)
Since (Y; ) . 1, it is convenient to define a
p
longitudinal [3] Prandtl number P" as l = k

P" u
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Hence, the formula for mass conservation in
an unsteady, irrotational flow of heat
conducting, calorically perfect, viscous gas
without body forces, radiation heat transfer, and
mass sources or sinks is:

p(f1-"24__ + ¢
{ [ 4 o

=§;’ i _ipl' 1+ P")(¢sss * 4)smm * ¢snn)
Y-1 ., 2 2
+ aTv (1 - P..)(4> ¢ ¢nn )

-1,
+ 295" (1= —Ew .

a

s h b+ h b )

mm’'nn

-1

w ol 2
251" (o
a

B 2 2
2u")(¢sm * +sn + )

¢mn
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(42)

We will refer to Eq. 42 as the Physically
Dissipative Potential (PDP) equation. If the
flow is steady and two-dimensional, Eq. 42
reduces to

2
pLC1-MT)$__ +$

5SS snn

45
+ d)nn]= - vv(1+ P")(¢
4
y-1 ., 2
‘ 71@ - e,

22 - E_ -
2 t(l 2 )‘bss‘#nn
When the viscosity is negligible, the entire

right hand side becomes zero and Eq. 43 converts
to an FPE.

This highly nonlinear expression can now be
compared with the classical V-T small
perturbation equation [3]

Y- 1

- (Y+1) Wx \bxx + yy E(l + FT

or the more complete pseudo-transonic [9,10] V-T
equation

L (58

2 4 - 4
(-Mo-CreM ¥ 19+ by L - (45)
Here 6>0 is a small diffusion coefficiept and ¥
is the perturbation velocity potentialtfYy <ﬁ<l.

Again,note that equations 42 and 43 satisfy
energy, momentum, and mass conservation and that
they were derived without the assumptions of
small perturbations and the consequept
linearizations.
It is obvious that PDP equation is considerably
more complex than the V-T equation, since PDP
equation retains all the nonlinearities.
Nevertheless, the linear dissipation terms in
both equations are practically the same.
, 1f Eq. 24 is reduced to a one- -dimensional
' steady version, the result is

1 H’et*"!ﬁ'fré)}

wel _oom 2
%(Pll 2“")¢sn
(43)

! i{f the body forces are negligible.
' Eq. 48 into Eq. 47,
% (Eq.

yields

_p" ¢XXX

TVs-Vh_ = (46)
°

Next, the conservation of energy (Eq. 6) can be
written as

(;'V)h = - gb + —{—R + (V V)p+d+Ve kVT}

(47

The conservation of momentum (Eq. 13) can be

expressed as

-

Vp = -pg—‘é - p(VeV) V + {ZIV(}AV)V)

-

——x(uVxV) + V(A(VeV))} (48)

Substituting
using the vector identity
14) and keeping only the steady terms,

p;-Vh°=V-(ZtV(;V)V - Ux(p¥xV) + V(A(VeV))}

- - -

+ & + UskVT + pVe(Vx(VxV)) (49)

For one-dimensional flow (which is always
irrotational), Eq. 49 reduces to

2

Bh,, $ (y-4)
E. - 2 Xx
ax ( P") ($ ¢xxx)-%j ‘ (50)

Eq. 50 shows that for steady one-dimensional
flows the stagnation enthalpy is constant through
a shock wave only when P" = ] is satisfied.

Since P" = Pu"/yu and P = 3/4 for a diatomic gas,
it follows that this is true only when Stbkes
hypothesis p"/p = 4/3 is used.

NUMERICAL EXAMPLES

With Eq. 50 and Eq. 46 the entropy variation
through a normal shock can be found. Equation 50
was integrated assuming Stokes hypothesis/(Figure
1} The final entropy jump across the shock wave
satisfies the Rankine-Hugoniot jump [11] |
condition for entropy. Nevertheless|, the
entropy exhibits a sharp spike in the middle of
the shock (Figure 1). From the entropy
generation equation it is easy to explain this
phenomena. The viscous d1551ptat10n ¢ is always
positive. The heat flux (kV2T) is positive only
until the middle of the shock; downstream from
the middle of the shock it becomes negative thus
lowering the entropy.

For the purpose of testing the accurpcy and
evaluating the sensitivity of the PDP equation
(Eq. 42), its one dimensional steady version was
used



Y-1 4’s; ¢

2 " TIN5
p(1-H Wss = —:’%&-(1 * P")az sSS
wY=1 -1 2
i (-5 ) (51
Since
p(1-n%) = &5 (2% - 4 D) (52)

a

and the local speed of sound, a, is defined in Eq.
34, it follows that Eq. 51 after multiplication

with a2 can be rewritten as

(T b (- -

e

Y+i 2
- p—%— (l-¢x )¢xx =0

1 2
P b

(53) .

Equation 53 was numerically integrated using .
a fourth order accurate Runge-Kutta scheme. The |
integration interval was 0s<xsl and the step size
was Ax = .000001. The values for P and u” ere P
= 3/4 and % 0.0000195. Values of the ﬁsicu
properties ‘liy k, Y and P are well documented in
existing literature, but experimentally obtained
values for A and P" differ by orders of
magnitude.

that the bulk viscosity is zero (us=%p+k=0).

Hence, A = - Zp is the most frequently used value

3

for the secondary viscosity. Nevertheless, from

data compiled by Truesdell [12], pB'%u for air

suggesting that A = 0.

To investigate the effect of different
values of A on the solution of Eq. 53, several
computer runs were performed. When
Eq. 53 is solved using Stokes hypothesis

(k=—%u), then the results will match Rankine-

Hugoniot shock jumps (Figure 2). In order to
illustrate the influence of secondary viscosity,
A, on the magnitude of the shock jump, a number
of numerical tests were performed with various
values of A/p and a fixed value of upstream
critical Mach number, (¢g); = 1.2. The results
of this comparison (Figure 3) confirm the
intuitive expectation that smaller values of A
cause steepening of the shock wave. Variation of
the critical Mach number (¢s)2 downstream of the
normal shock as a function of the secondary
viscosity u" is shown in Figure 4. Notice that
Rankine-Hugoniot jump conditions will be
obtained when A/p = -2/3 and that the isentropic
shock jump conditions [11] will be obtained when
A/w = =-2. Thus, PDP accepts Rankine-Hugoniot and
isentropic shocks as a part of its general
solution.

For example, Stokes hypothesis states

CONCLUSIONS

A new analytic model was derived thdt
combines mass, momentum and energy conserivation
in a single Physically Dissipative Potentlial
equation for nonsteady, irrotational floﬁ of
viscous, heat conducting, calorically penfect
gases without body forces. The governing
equation is a third order highly nonlinear
partial differential equation which accurately
predicts strengths and structures of the jshock
waves. This equation can be used instead of the
Full Potential Equation as a more appropriate
model for transonic shocked flow computatlions and
especially for the more appropriate modelling and
analysis of numerical dissipation. 1In addition,
it can be used in nonlinear acoustics where it is
important to accurately predict the attemuation
of sound waves. ‘
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