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Chapter 1

Control of Flow Separation over
a Circular Cylinder Using
Electro-Magnetic Fields:
Numerical Simulation

Brian H. Dennis1 and George S. Dulikravich2

1.1 Nomenclature

B = µ0(H + M) magnetic flux density,kg A−1 s−2

Cp specific heat at constant pressure,K−1 m2 s−2

d = 1
2 [∇v + (∇v)T ] average rate of deformation tensor,s−1

D
Dt = ∂

∂t + v · ∇ material derivative,s−1

D = ε0E + P electric displacement vector,A s m−2

E electric field intensity,kg m s−3 A−1

Ê = E + v ×B electromotive intensity,kg m s−3 A−1

H magnetic field intensity,A m−1

I unit tensor
J = Jc + qev electric current density,A m−2

Jc electric conduction current,A m−2

M total magnetization per unit volume,A m−1

M̂ = M + v × P magnetomotive intensity,A m−1
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4 Flow Separation Control with Electro-Magnetic Fields

p pressure,kg m−1 s−2

P total polarization per unit volume,A s m−2

qe total electric charge per unit volume,A s m−3

q conduction heat flux,kg s−3

Qh heat source per unit volume,kg m−1 s−3

t time,s
t = −ϕI + τ Cauchy stress tensor,kg m−1 s−2

T absolute temperature,K
û internal energy per unit mass,m2 s−2

v fluid velocity,m s−1

Greek Symbols
ε electric permittivity,kg−1 m−3 s4 A2

ε0 electric permittivity of vacuum,kg−1 m−3 s4 A2

εp = ε0χe polarization electric permittivity,kg−1 m−3 s4 A2

εr = ε/ε0 relative electric permittivity
η fluid viscosity,kgm−1s−1

φ electric potential,V m
ϕ modified hydrostatic pressure,kgm−1s−2

ρ fluid density,kg m−3

τ deviator part of stress tensor,kg m−1 s−2

µ magnetic permeability,kg m A−2 s−2

µ0 = 4π × 10−7 magnetic permeability of vacuum,kg mA−2s−2

µr = µ/µ0 relative magnetic permeability
µm = µ0/χB magnetization magnetic permeability,kg mA−2s−2

χB = 1− µ−1
r magnetic susceptibility based onB

χe = εr − 1 electric susceptibility
ω vorticity, s−1

1.2 Introduction

In recent years there has been a growing interest in the simulation of coupled physics
or multidisciplinary phenomena. Advances in computer processor technology has re-
cently allowed researchers to consider large systems of differential equations repre-
senting complex coupled problems. An example of a multidisciplinary analysis is
the simulation of fluid flow under the influence of externally applied electro-magnetic
fields. The study of fluid flows containing electric charges under the influence of an
externally applied electric field and negligible magnetic field is known as electrohy-
drodynamics or EHD. The study of fluid flows without electric charges and influenced
only by an externally applied magnetic field is known as magnetohydrodynamics or
MHD [18]. Numerous publications are available dealing with the EHD and the MHD
models [19, 13], their numerical simulations, and applications [6, 4, 3, 5, 7, 17, 9, 8, 1].
Although fairly complex, the existing mathematical models for EHD and MHD often



B. H. Dennis and G. S. Dulikravich 5

represent unacceptably simplified and inconsistent models of the actual physics [11].
The study of fluid flows under the combined influence of the externally applied and
internally generated electric and magnetic fields is often called electro-magneto-fluid
dynamics (EMFD) [12, 10]. However, the mathematical model for such combined elec-
tromagnetic field interaction with fluid flows is extremely complex and requires a large
number of new physical properties of the fluid that cannot be found in open literature.
Thus, a somewhat simplified mathematical model should be used in actual numerical
simulations of fluid flows under the combined influence of the externally applied elec-
tric and magnetic fields. In the case of incompressible fluids, such a non-linear model
termed second order lectromagnetohydrodynamics (EMHD) was derived by Ko and
Dulikravich [15]. This is a second order theory that is fully consistent with all of the
basic assumptions of the complete EMFD model [12, 10]. The basic assumptions are
that the electric and magnetic fields, rate of strain, and temperature gradient are rel-
atively small. Furthermore, terms of second order and higher in the average rate of
deformation tensor are neglected as in the case of conventional Newtonian fluids. Only
the terms up to second order ind,Ê,B,∇T are retained. Because of the unavailability
of the complete EMHD model until recently and because of the considerable complex-
ity of even simpler versions of the EMHD model, it is still hard to find publications
dealing with the combined influence of electric and magnetic fields and fluid flow.

The objective of this paper is to present numerical results for the flow over a circular
cylinder that is under the influence of combined electric and magnetic fields. The
results presented here indicate that electro-magnetic fields can be used to eliminate
the flow separation in steady flow. In addition, results also show that electro-magnetic
fields can be used to eliminate periodic vortex shedding in the case of unsteady flow.
These simulations were performed using a simplified EMHD model for the case of
two-dimensional planar flows for electrically conducting incompressible fluids. The
equations were discretized with the Least-Squares Finite Element Method (LSFEM)
and solved on a single processor workstation. The numerical results will be presented
for both steady and unsteady laminar flows of homocompositional Newtonian fluids.
The accuracy of the numerical method was also verified against a simple analytical
solution for magnetohydrodynamics.

It should be pointed out that similar effects on the flow-field around a circular cylin-
der were numerically predicted and experimentally verified by a research team from
Germany [20, 21]. However, their arrangement of magnets and electrodes was entirely
different from the arrangement presented in this paper indicating that there are multi-
ple configurations of magnets and electrodes capable of producing the same flow-field
alterations.

1.3 Second Order Analytical Model of EMHD

A full system of partial differential equations governing incompressible flows under the
combined effects of electromagnetic forces [15] is summarized in this section by using
the constitutive equations which have been derived through the second order theory.
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Specifically, polarization and magnetization vectors are defined as

P = ε0χeÊ ≡ εpÊ, M̂ =
χB

µ0
B ≡ B

µm
. (1.1)

which indicates a medium with purely instantaneous response [16]. The deviator part
of the stress tensor is defined as

τ = 2µvd− σ2Ê ⊗ Ê − T−1κ2∇T ⊗∇T

−(T−1κ5 + σ5)(Ê · ∇T )S ,
(1.2)

Electric current conduction vector is defined as

Jc = σ1Ê + σ2d · Ê + σ4∇T + σ5d · ∇T

+σ7Ê ×B + T−1κ8∇T ×B,
(1.3)

while thermal conduction flux is defined as

q = κ1∇T + κ2d · ∇T + κ4Ê + κ7∇×B + κ8Ê ×B, (1.4)

Then, Maxwell’s equations become

∇ ·
(
ε0E + εpÊ

)
= qe, (1.5)

∇ ·B = 0, (1.6)

∇× E =
∂B

∂t
, (1.7)

∇×
(

B

µ
+ εpv × Ê

)
=

∂

∂t

(
ε0E + εpÊ

)

+ qev + σ1Ê + σ2d · Ê + σ4∇T (1.8)

+ σ5d · ∇T + σ7Ê ×B + T−1κ8∇T ×B.

while the Navier-Stokes equations become

∇ · v = 0, (1.9)

ρ
Dv

Dt
= −ρg[1− α(T − T0)]i3 −∇ (p + pe + pm)

+ ∇ · (µv

(∇v +∇vT
))−∇ ·

(
σ2(Ê ⊗ Ê)

)

− ∇ · (T−1κ2 (∇T ⊗∇T )
)

+ qeÊ

− ∇ ·
(
(T−1κ5 + σ5)(Ê ⊗∇T )S

)
+ σ1Ê ×B (1.10)

+ σ2d · Ê ×B + σ4∇T ×B + σ5d · ∇T ×B

+ σ7(Ê ×B)×B + T−1κ8(∇T ×B)×B
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+ εp(∇E) · Ê + (∇B) · ( B

µm
− εpv × Ê +

D

Dt
(εpÊ ×B)),

ρCp
DT

Dt
= Qh +∇ · (κ1∇T + κ2d · ∇T + κ4Ê + κ5d · E
+ κ7∇T ×B + κ8E ·B) + σ1Ê · Ê + σ4Ê · ∇T (1.11)

− κ2

T
∇T · d · ∇T − κ5

T
Ê · d · ∇T +

κ8

T
Ê · (∇T ×B)

+ Ê · D(εÊ)
Dt

− B

µm
· DB

Dt
.

Notice that in this EMHD model the physical properties of the incompressible fluid,
χe, χB , µv, σ1, σ2, σ4, σ5, σ7, κ1, κ2, κ4, κ5, κ7, κ8, α, can be either constants or
functions of temperature only.

1.4 Least-Squares Finite Element Method

The system of partial differential equations described in this section 1.3 is discretized
using the Least-Squares Finite Element Method (LSFEM). We first look at the LSFEM
for a general linear first-order system [14, 2]

Lu = f (1.12)

where

L = A1
∂

∂x
+ A2

∂

∂y
+ A3 (1.13)

for two-dimensional problems. The residual of the system is represented byR.

R(u) = Lu− f (1.14)

We now define the following least squares functionalI over the domainΩ

I(u) =
∫

Ω

R(u)T ·R(u) dx dy (1.15)

The weak statement is then obtained by taking the variation ofI with respect tou and
setting the result equal to zero.

δI(u) =
∫

Ω

(
Lδu

)(
Lu− f

)
dx dy = 0 (1.16)

Using equal order shape functions,φ̂
i
, for all unknowns, the vectoru is written as

u =
n∑

i=1

φ̂
i

{
u1, u2, u3, ..., um

}T

i
(1.17)
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where{u1, u2, u3, ..., um

}
i

are the nodal values at theith node of the finite element.
Introducing the above approximation foru into the weak statement leads to a linear
system of algebraic equations

KU = F (1.18)

whereK is the stiffness matrix,U is the vector of unknowns, andF is the force vector.

1.4.1 Nondimensional First Order Form for Simplified EMHD

The full system of partial differential equations describing EMHD flows contain many
parameters that refer to physical properties that are not known at this time. Rather than
complete numerical simulations with guessed values of these parameters, we chose to
work with only those terms for which the material properties are known. In this case,
we simplify the equations by retaining only source terms that containκ1 andσ1 since
these values are available for various fluids.

Use of LSFEM for systems of equations that contain higher order derivatives is
usually difficult due to the higher continuity restrictions imposed on the approxima-
tion functions. For this reason it is more convenient to transform the system into an
equivalent first order form before applying LSFEM. For the case of electro-magneto-
hydrodynamics, the second order derivatives are transformed by introducing vorticity,
ω, as an additional unknown.

In addition, we assume the flow is unsteady but isothermal and without charged
particles. In this case the energy and charge transport equations are not required and
source terms associated with charges are dropped. We also consider only electrostatic
and magnetostatic fields.

∇ · v∗ = 0 (1.19)
∂v∗

∂t + v∗ · ∇v∗ + 1
Re∇× ω∗ +∇p∗ − Ht2

Re v∗ ×B∗ ×B∗

−M1E
∗ ×B∗ = 0 (1.20)

ω∗ −∇× v∗ = 0 (1.21)

∇ ·B∗ = 0 (1.22)

∇×B∗ = Rmv∗ ×B∗ + B2E
∗ (1.23)

∇ · E∗ = 0 (1.24)

∇× E∗ = 0 (1.25)

∇φ∗ = E∗ (1.26)

wherev∗ = v v−1
0 , ω∗ = ω L0v

−1
0 , B∗ = B B−1

0 , E∗ = EL0 ∆φ−1
0 ,φ∗ =

φ∆φ−1
0 , p∗ = p ρ−1v−2

0 , x∗ = x L−1
0 , y∗ = y L−1

0 . Here,L0 is the reference length,
v0 is the reference speed,∆φ0 is the reference electric potential difference, andB0 is
the reference magnetic flux density. For convenience the∗ superscript will be dropped
for the remainder of the paper.
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The nondimensional numbers are given by:

Rm = µσv0L0 , B2 = µ0σ0∆φ0
B0

, Re = ρ0v0L0
η0

, Ht = L0B0

√
σ0
η0

, M1 = ∆φ0B0σ0
ρ0v2

0

(1.27)
It should be noted that the electric potential is introduced as an additional variable due
to the convenience of applying physically meaningful boundary conditions for elec-
trodes. For the electric field equations, the first order form of Maxwell’s equations
does not include electric potential. Since the most common boundary conditions for
static electric fields are given in terms of potential, it is necessary to add the equation
(1.26) for electric potential,φ.

We now write the above system in the general form of a first-order system (1.12).
Although the entire system written in (1.19)-(1.26) can be treated by LSFEM, it was
found to be more economical to solve the fluid and electromagnetic field equations
separately, in an iterative manner. Here, a general form first order system is written
for the fluid system (1.19)- (1.21) and denoted by the superscriptfluid. Here the
time derivative term in the fluid equations is approximated using the backward-Euler
scheme.

∂v

∂t
≈ vn+1 − vn

∆t
(1.28)

A first-order system is also written in general form for the electro-magnetic field equa-
tions (1.22)-(1.26) and is denoted by the superscriptem. In addition, the nonlinear con-
vective terms in the fluid equations are linearized with Newton’s method leading to a
system suitable for treatment with the LSFEM. For the two-dimensional case we spec-
ify the z component of the magnetic field and assume thex andy components are zero.
For many engineering applications, the magnitude ofRm andB2 is typically small so
we expect the current-induced magnetic field inx − y to be negligible compared to
the magnitude of the externally applied magnetic field. Thex andy components for
velocity, v, and electric field,E, are left as unknowns while theirz components are
assumed to be zero. For simplicity, we only consider flows that do not contain free
charged particles.

Afluid

1
=




1 0 0 0
u0 0 1 0
0 u0 0 − 1

Re
0 −1 0 0


 , Afluid

2
=




0 1 0 0
v0 0 0 1

Re
0 v0 1 0
1 0 0 0


 ,

Afluid

3
=




0 0 0 0
1

∆t + Ht2

Re B2
z0 + ∂u0

∂x
∂u0
∂y 0 0

∂v0
∂x

1
∆t + Ht2

Re B2
z0 + ∂v0

∂y 0 0
0 0 0 1


 ,
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ffluid =





0
un

∆t + u0
∂uo

∂x + v0
∂uo

∂y −M1Ey0Bz0
vn

∆t + u0
∂vo

∂x + v0
∂vo

∂y + M1Ex0Bz0

0





, ufluid =





u
v
p
ω





n+1

(1.29)

Aem

1
=




0 1 0
1 0 0
0 0 0
0 0 −1


 , Aem

2
=




0 0 1
0 0 0
1 0 0
0 1 0


 , Aem

3
=




0 0 0
0 −1 0
0 0 −1
0 0 0


 ,

fem =





0
0
0
0





, uem =





φ
Ex

Ey



 (1.30)

A solution satisfying all of the above systems of equations can be found by using
a simple iterative process. First, the system given in (1.30) is solved for the electric
field. The system in (1.29) is solved with the electric field and velocities from the
previous time step. Here, quantities taken from the previous iteration are designated
with the subscript0. These equations may be iterated at each time step if the problem
is very nonlinear. In that case the iteration at each time step is repeated until a specified
convergence tolerance is reached. The reduction of the residual norm of both systems
by 3.5 orders of magnitude is usually achieved in less than 5 iterations.

1.4.2 Verification of Accuracy

It is difficult to verify the accuracy of an EMHD code. This is due to the absence
of analytical solutions for such equations. However, analytical solutions do exist for
MHD flows. Here we will use such an analytic solution to validate the MHD portion
of the code.

The accuracy of the LSFEM for MHD was tested against analytic solutions for
Poiseuille-Hartmann flow [13]. The Poiseuille-Hartmann flow is a 1-D flow of a con-
ducting and viscous fluid between two stationary plates with a uniform external mag-
netic field applied orthogonal to the plates. Assuming the walls are aty = ±L and that
fluid velocity on the walls is zero and that the fluid moves in the x-direction under the
influence of a constant pressure gradient, then the velocity profile is given by

u(y) =
ρHt

σB2
y

∂p

∂x

(
cosh(Ht)− cosh(Hty

L )
sinh(Ht)

)
(1.31)

The movement of the fluid induces a magnetic field in the x-direction and is given by

Bx(y) =
ByRm

Ht

(
sinh(Hty

L )− y
L sinh(Ht)

cosh(Ht)− 1

)
(1.32)
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A test case was run using the parameters given in Table 1.1 and with a mesh composed
of 2718 parabolic triangular elements. Figure 1.1 shows the computed and analytical
results for the velocity profile. Figure 1.2 shows the computed and analytical results
for the induced magnetic field. For both cases, one can see that the agreement between
the analytical solution and the LSFEM solution is excellent.

1.5 Numerical Results

The LSFEM formulation for EMHD will now be demonstrated for the electro-magnetic
control of flow over a circular cylinder. The configuration of the electrodes and mag-
nets is illustrated in Figure 1.3. In this configuration, the cylinder is divided into two
electrodes, one on top and bottom, with magnets placed slightly downstream in the
wake region. This configuration is in reality 3-D, but can be approximated in 2-D by
specifying thez-component of the magnetic and computing thex − y components of
the electric and flow fields. The known magnetic field is assumed to be uniform and is
applied into thex− y plane.

The fluid is considered to be electrically conducting and flows over a circle with unit
diameter. We computed both steady and unsteady flow cases to observe the effect of the
electro-magnetic fields on the flow patterns. The relevant nondimensional parameters
are shown in Table 1.2 for the two test cases.

The hybrid triangular and quadrilateral mesh shown in Figure 1.4 was used for all
computations. The mesh is composed of 818 parabolic elements with 2458 nodes.
No slip boundary conditions were applied to the cylinder surface while free stream
conditions were applied at the inlet and top and bottom of the outer domain. Conditions
on the outlet boundary were left free. Electric potentials are specified on the surfaces of
the electrodes, thus creating a potential difference that forces current to flow through
the electrically conducting fluid. Figure 1.5 shows the computed distribution of the
electric potential as well as the electric field lines for the electrostatic field. The source
terms in the EMHD system directly involve the electric field intensity,E, so we expect
that the shape of the field lines will have a strong influence on the flow pattern. In
the present case, constant potentials are used on each electrode so the field lines are
distributed smoothly across the domain.

In the first case, the steady flow atRe = 37 is computed with no electric or mag-
netic field. Figure 1.6 shows the streamlines and pressure distribution for this classical
flow. When the electric and magnetic fields are applied to the flow, the velocity and
pressure distribution has been changed dramatically as shown in Figure 1.7. One inter-
esting note about this result is that although the separation behind the cylinder has been
removed, the pressure on the back of the cylinder is significantly decreased. This low
pressure is due to the increased flow velocity that occurs just behind the cylinder when
the body force due to the electro-magnetic field is present. In addition, if the polarity
of the electrodes is reversed, the opposite effect is observed. Figure 1.8 shows that
the separation strength is actually enhanced by the reverse polarity electro-magnetic
field. However, although the separation is stronger, the pressure on the back wall of the
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cylinder increases. Once again, this increase in pressure is due to the energy inserted
into the flow through the external electro-magnetic field.

In the second case, the unsteady flow atRe = 100 is first computed with no elec-
tric or magnetic field. The flow is computed from an initially uniform flow field until
a periodic state is reached. For this case a time step∆t = 0.1 was used and the pe-
riodic flow was reached after 900 time steps. Figure 1.9 shows the particle traces at
one instant around 1400 time steps. At this point the characteristic vortex shedding
pattern can be clearly seen. The case was run again, but after 1200 time steps the
static electro-magnetic field was activated. By 1400 time steps the particle traces in
Figure 1.10 clearly show the effect of the electro-magnetic field on the wake structure.
By the 2000 time step mark the flow reaches a steady, time-independent state. The
flow becomes more stable due to the elimination of the periodic vortex shedding as
shown in Figure 1.11. The combined electric and magnetic field in this configuration
have a strong damping effect to the point of completely suppressing the vortex shed-
ding typically seen atRe = 100. The resulting flow field is steady and is shown in
Figure 1.12.

1.6 Conclusion

A unified theoretical model of simultaneously applied and interacting electric and
magnetic fields and incompressible homocompositional viscous fluid flows has been
expressed as a coupled sequence of first order partial differential equation systems.
These systems were discretized in 2-D using a least-squares finite element method and
integrated on an unstructured computational grid. Numerical results are in excellent
agreement for the test case of a steady laminar flow between infinite parallel plates
with simultaneously applied uniform vertical electric field and a uniform horizontal
magnetic field. The method was used to simulate the flow over a circular cylinder with
and without an externally applied electric and magnetic field. Results show that a cer-
tain arrangement of electrodes and magnets can be used to eliminate flow separations
in steady flow and suppress vortex shedding in unsteady flows.
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Table 1.1: Parameters used for Poisuille-Hartmann Flow Test Problem
Ht 10.0
Rm 6× 10−7

L0 (m) 1.0
v0 (ms−1) 0.6

η (kg m−1s−1) 0.01
B0 (T ) 1.0

µ (H m−1) 1× 10−6

∂p/∂x (Pa m−1) 0.6
σ (Ω−1m−1) 1.0

Table 1.2: Non-dimensional numbers used for test cases
Number Steady Case Unsteady Case

Re 37.0 100.0
Ht 0.01 0.01
Rm 1.0× 10−5 1.0× 10−5

M1 2.7 1.0
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Figure 1.1: Computed and exact values for velocity
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Figure 1.2: Computed and exact values for induced magnetic field
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Figure 1.4: Hybrid unstructured mesh used
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Figure 1.5: Computed electric field lines and electric potential contours
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Figure 1.6: Pressure field and streamlines for steady flow with no electric field
and no magnetic field
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Figure 1.7: Pressure field and streamlines for steady flow with electric field
and magnetic field



20 Flow Separation Control with Electro-Magnetic Fields

X

Y

-2 0 2

-2

-1

0

1

2

Figure 1.8: Pressure field and streamlines for steady flow with reversed electric
field and magnetic field

Figure 1.9: Particle traces for unsteady flow with no electric field and no mag-
netic field
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Figure 1.10: Time variation ofv-component of velocity in the wake

Figure 1.11: Particle traces for unsteady flow with electric field and magnetic
field turned on at 120 s
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Figure 1.12: Pressure field and streamlines for Re=100 steady flow induced
by electric field and magnetic field


