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Inverse Design of Composite

Turbine Blade Circular Coolant
Flow Passages

An inverse design and optimization method is developed to determine the proper
size and location of the circular holes {coolant flow passages) in a composite tur-
bine blade. The temperature distributions specified on the outer blade surface and
on the surfaces of the inner holes can be prescribed a priori. In addition, heat flux
distribution on the outer blade surface can be prescribed and iteratively enforced us-
ing optimization procedures. The prescribed heat flux distribution on the outer sur-
face is iteratively approached by using the Sequential Unconstrained Minimization
Technique (SUMT) to adjust the sizes and locations of the initially guessed circular
holes. During each optimization iteration, a two-dimensional heat conduction equa-
tion is solved using direct Boundary Element Method (BEM) with linear
temperature singularity distribution. For manufacturing purposes the additional
constraints are enforced assuring the minimal prescribed blade wall thickness and
spacing between the walls of two neighboring holes. The method is applicable to
both single material (homogeneous) and coated (composite) turbine blades. Three
different cases were tested to prove the feasibility and the accuracy of the method.

Introduction

The idea of using an optimization technique coupled with
the panel method (a kind of indirect BEM, often used in fluid
mechanics to solve Laplace’s equation) to develop an inverse
design method for multiholed internally cooled turbine blades
was originated by Kennon and Dulikravich [1-4]. They used
the panel method to solve Laplace’s equation for the
temperature field in the solid blade material subject to partly
Cauchy-type boundary conditions. The computed tem-
perature distibution on the initially guessed inner coolant flow
passage walls, and the prescribed coolant temperature on these
walls, were then iteratively approached by changing the shapes
and sizes of the coolant flow passages until the procedure
converged.

The present work represents an improvement oOver this
method which can be summarized as follows:

The temperature and heat flux distributions on the I'; sur-
face (Fig. 1) of the turbine blade are specified a priori in the
original method. This is now changed to the temperature
distribution and heat flux distribution specified on I'; and the
temperature distribution specified on I'; surface, thus chang-
ing boundary conditions for Laplace’s equation from a partly
Cauchy type to a Dirichlet type during each iterative step.

The objective function is changed to the error function
defined by the differences between the calculated and specified
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heat flux distributions on the surface T'; instead of differences
in temperatures on the surface I';.

In this paper the direct BEM is used instead of the panel
method to solve the two-dimensional Laplace equation for the
steady-state temperature field. Also, the elements used now
have a linear temperature distribution instead of the constant
temperature distribution.

Two constraints that might be required in the practical
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coated material with thermal conductivity k

Fig. 1 Geometry and manufacturing constraints
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blade manufacturing process are¢ added. They allow a
minimum distance d, to be maintained between any hole and
the T', surface and a minimum distance d, to be maintained
between the walls of any two neighboring holes (Fig. 1).

The nonhomogeneous blade design is allowed whereby a
surface layer of, for example, ceramic material is used to coat
the turbine surface T', (Fig. 1). This results in two coupled
Laplace equations that need to be solved simultaneously.

All the inner coolant flow passages are forced to be circular,
since the circular shape is more acceptable than the arbitrary
shape from the manufacturing point of view.

Analytic Formulation

There are two methods of formulating the boundary-value
problems of potential theory. The first method is referred to
as an indirect formulation. It represents the potential function
u with a single-layer or a double-layer potential generated by
continuous source distibution over a surface I'. This procedure
leads to the formulation of integral equations which define the
source densities. This method is mainly used in fluid
mechanics where it is known as the source panel method.

However, one of the disadvantages of the indirect formula-
tion is that the calculated source strengths usually have no ob-
vious physical relation to the problem [5]. The other disadvan-
tage is that the boundary surface is restricted to be a Liapunov
(smooth) surface. These disadvantages can be overcome by us-
ing the direct formulation of the BEM {51.

The direct formulation can be deduced [5] from Green’s
third identity or the weighted residual method, since the latter
permits a straightforward extension to solve more complex
partial differential equations and can combine the BEM with
more classical numerical methods. Therefore the latter
method is usually used to formulate integral equations. The
weighted residual statement can be written as

[ (vrupuran= SFN (g—G)urdl — SFE (u—i)g*d ()

where u* is the fundamental solution of the Laplace equation
on a domain €, that is,

vt +4,=0 )

where A, is the Dirac delta function. For an isotropic two-
dimensional medium
u*= ! l’n ! 3)
T 2w r
where r is the distance from point i to the point under con-
sideration. Then
_ ou . u* @)
9= n a an
Usually, u = u on I are called the essential conditions and
du/dn = qonTy are called the natural conditions.
Integrating by parts and substituting equation (2) into the
left-hand side of equation (1), the final form of the boundary
integral equation is

ciu,~+g uq'dl’zg qu*dl )
r r

This equation provides & functional constraint between u
and g over T, which ensures their compatibility as boundary
data. Here, ¢, is the value of the scaled internal angle of the
boundary T' at the point i (Fig. 2a), that is

C—B
C 2

Consequently, ¢, = 1/2 for a point on & smooth boundary

(6)
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where there is a continuous tangent, ¢; = 1 for a point in the
interior 2, and ¢; = O fora point exterior to €.

Numerical Discretization

Equation (5) can be discretized into a series of straight
elements on the surface T with the variation of u and g as-
sumed to be linear along each element. The points where the
unknown derivatives g of the potential are considered are
called nodes and are taken 10 be at the ends of each element
(Fig. 2a).

Equation (5) can be written for the n elements as

n n
ciu;+ E S ug*dl'= E S qu*drl N
=1 % jer ot

The values of u and g at any point of the element can be
defined in terms of their nodal values and the linear interpola-
tion functions ¢, and ¢, that is

u,

U(E)=[¢’1¢2] ®)
Uy
aq,

Q(£)=[¢1¢z]\: } )]
q;

where ¢ is the dimensionless coordinate (Fig. 2b), ¢ = 2x/1,
¢, = (172 —§),and ¢, = (172) (1+§). Then

u,
S ug*dr = [k}, h}l (10)
T Uy
where
h}jzg ¢,q*dl’ h,%-:S ¢,g*dl
T; r;
Hence
q,
[, quar=ig), &} an
r; R
where

g},-=S outdl g%j=g éou"dl
T T

All coefficients Aj;, h, g, and g} canbe evaluated by using
the numerical integration. When i=j, g}j and g,?j are deter-
mined analytically [5]-

Substituting these into equation (7), the equation for node i

can be obtained as

u; q,
Ci“i+[1:]in o HR) =[G;,Gins - - - ,Ginl
Un an
(12)
where for allj # 1
Hijzhlz,j—l+h},jv Gij=g.2,j—1+g},j 13)
and forj = 1
I:Ii,j =h}, +hN, Gy =gl +&n (14)
Then
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or more simply
N N
EH,ju,= EG,,ﬂ, (16)
j=1 j=1
where
H, ;=H, ; for i#j
H, ;=H +c for i=j (17

Composite Blades

Turbine blades with, say, ceramic coating have two regions
of considerably different thermal conductivities. Therefore,
two coupled Laplace equations for temperature field need to
be solved. The corresponding two matrices can be added
together by using the continuity of heat fluxes and equalizing
the temperatures themselves at the interface ', between the
coating and the main turbine material.

Assume that there are N; elements on the surfaces I'; where
i=1, 2, 3 and that the thermal conductivity in @, is k; and in
Qg is k,. For domain Q, (coating material) the governing
equations are then

or more simply

I, r
2, Q4 u Q, Q, Q /k,
{Hl . H, } | L\ . G, ] r,
u Q /k
(19
In the same way, for domain Qg (main blade mat;rial)
T, I,
Qg Qp u Qg Qp -Q /k,
L;, . H, } r| L;, . G, } r,
lu ] Q /k,
(20)

Combining equation (19) and equation (20) and moving all
the unknowns to the right-hand side results in
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Problem of Nonuniqueness

For a multiply connected domain, the solution of the in-
tegral equation with Dirichlet or mixed-type boundary condi-
tions does not always have a unique solution [6]. That is, fora
given curve shape T there will always exist a particular curve
o here difficulties will occur in connection with the



domain Q

element node i

Fig. 2(a) Discretized boundary I'
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Notice the directions of the normal defined on different sur-
faces as shown in Fig. 1. So, for surfaces ', and T, the
numbering scheme is defined in the counterclockwise direc-
tion, while for T'; it is in the clockwise direction.
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mntegral €qudllONS UL v ES0 = 0,

In the present work, this situation is avoided by a simple
change of scale—a method adopted by Symm [6}, so that the
maximum diameter of the domain is not greater than unity.
This is sufficient to ensure that there is no possibility of
nonuniqueness due to T being a T contour. Alternatively, a
unique solution may also be obtained by adding an ap-
propriate auxiliary condition [7]. Detailed discussions on the
nonuniqueness of the solutions of the integral equations can
be found in [8, 9].

T TR T

Optimization Procedures and Concept

The iterative optimization procedure used to modify the
sizes and locations of the guessed coolant flow passages can be
explained using the following steps:

1 Specify the potential (temperature) distributions ¥ on
surfaces I'y and T';.

2 Specify the heat flux distribution QR]- (for j=1,...,
N,) on surface I'y, and the thermal conductivities &, and k,.

3 Specify the manufacturing constraints: (/) minimum
distance d, allowed between the holes and surface I'y; (if)
minimum distance d; allowed between any two neighboring
hole surfaces I';.

4 Specify the number of holes required, and the initial
guess of the radii and location of the centers of the holes. Also
required is specification of the number of boundary elements
to be used on surfaces 'y, T',, and each of the holes, T'5.

The geometry for each circular hole can be defined by three
independent variables: center coordinates x and y, and the
radius r. If there are M holes, there will be 3M independent
variables in the error function.

However, the initially guessed variables should locate the
holes entirely in the feasible region of domain (g, that is, the
constraints in step 3 must be satisfied (Fig. 1).

5 With the BEM described earlier, solve the Laplace equa-
tion for temperature field and calculate the heat flux Of
(G=1,...,Nyon surface I';.

6 Use the Q5 to determine the values of the error function
and the objective function (OBJ) of the optimization problem.

The nondimensional error function E, can be defined as

[ E (QJC.—QI’?)Z]W

Eo(x) =Eo(x;, ¥is r) = =

Ny
[J:z:l (Qf)z] 1/2

The purpose is to find the optimal value of x(x;, y:; r;) for
i=1,...,M such that E, is minimized. A penalty function
must be added to Ej to construct the OBJ function E*(x) for
the two manufacturing constraints, that is,

(22)

(23)

There are many different forms for the penalty function
[10]. The penalty function used here is of the interior method
type with the inverse barrier function proposed by Carroll [11}
Ny

E*(x) = Ey(x) + penalty function

N
dy
Penalty function = R-[ —_—
’ J; (D;—do)

d;
kE=1 (Dy—d)) ]
(24)

where N, = M1/20 (M — 2). Here, D; is the minimum com-
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Fig. 3 Geometry and boundary conditions, test case 1
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Fig. 4 Ilteration sequence, test case 1

puted distance between the element j of I’y and the surface T,
and D, is the computed distance between any two circular
holes

Dk'_'[(xi_xi+l)2+(yi_yi+l)2]l/2—(ri+ri41)
for holes i and i+ 1.

R is a positive constant which is chosen to be initially quite
large during the first few optimization iterations, and then
gradually reduced to near zero. E*(x) will then approach Ej.
This method is called the Sequential Unconstrained Minimiza-
tion Technique (SUMT).

A relation between the initial penalty function and the error
function is defined as the Penalty Adjustment Coefficient
(PAQ), that is

Penalty function
E,
7 Use the steepest-descent optimization technique to find
the new values of the independent variables x until the cor-

responding E*(x) is below a satisfactory value, otherwise
return to step 5.

PAC=

Results and Discussion

On the basis of the preceding analysis a computer program
[12} was developed and tested using the following three test
cases.

The first test case was used to test the reliability of the com-
puter program as an analysis tool. The geometry consists of a
coating and a single hole (Fig. 3) with ryiryir; = 0.5:0.8:1.2,
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k,=1, ky=5, T, =100, T; =20 (uniform distributed). A total
of 72 boundary elements were used. The results are listed in
Table 1, showing that the largest error between the analytic
solution and the BEM solution is about 1.63 percent in Q.
The accuracy of the BEM can be further improved by either
increasing the number of elements or using higher order
elements. The inverse optimization solutions were accom-
plished (Table 1) by specifying the heat flux distribution on T,
and temperature distribution on I', and I'y surfaces. The heat
flux on I'; surface was then calculated by the BEM after each
jteration, that is, after each adjustment of the hole shapes and
their locations. The initially guessed surface T, and its
iterative evolution sequence are shown in Fig. 4.

The second test case was used to test the feasibility of the in-
verse design concept. The same heat flux distribution on the
surface ', was kept as in the first case, but the number of the
circular holes was changed to three instead of one (Fig. 5a).
Temperature distributions on T, and the holes I'; did not
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Table 1 Results for the first test case, using linear BEM; * —values are given at the specified conditions

Surface )
rl rz r]
hole hole
Center Radlus
Properties
Method Q q, T, Q,
x y r
Analytic Solutfon 133.47 -200.21 35.06 -320.3¢4 0.00* 0.00* 0.5
BEM Approximate Sclution 135.65 -200.43 35.21 -324.1 0.00* 0.00* 0.5%
P.A. Coeff
0.1 135.65*% -200.52 35.24 -324.74 0.00032| 0.0006 | ©0.4998
Inverse Optimization
Selution
1.0 135.65% ~200.44 35.21 -324.64 0.000) 0.0000 | ©.5001
5.0 135.65% -200.34 35.25 -324.90 0.0005 0.0003 | 0.4994

Table 2 Results for the third test case using a linear element; * _values are given at the specitied conditions

Hole 1 Hole 2 L2
Total Heat Flux Norm Error
on Surface x 100
Center Radius Center Radtus
N T, Ty * Y) 2 % v, T,
Approximate Sclution 70554 -70636 -71501 0.3* 1.25*% 0.08* 0.5*% 1.0% 0.05*
P.A. Coeff

0.1 70570 -70653 -71648 0.2978 1.2511 0.0783 0.5031 1.008 0.053 0.927

0.5 70214 -70298 -71339 0.2953 1.2530 0.0774 0.4997 1.021 0.055 2.3466
Inverse
Optimization 1.0 7.0564 ~70647 -71648 0.2976 1.2512 0.0782 0.5031 1.009 0.05¢4 0.991
Solution

1.5 70556 ~-70639 -71635 0.2977 1.2512 0.0783 0.5031 1.008 0.054 0.95

5.0 70564 -70647 -71646 0.2977 1.2512 0.0782 0.5031 1,008 0.054 0.972

8.0 70585 ~70669 -71664 0.2977 1.2512 0.0783 0.5031 1.008 0.053 0.921

change, that is, it was still 7,=1000n T, and T; =200nT;. No obvious irregularity can be seen from the convergence

Comparison of the calculated heat flux distribution with the history of E, except when the PAC is chosen to be too big.
specified heat flux is shown in Fig. 6. The corresponding  Then, there will be an upshoot during the first iteration (see
L2-norm error was below 2 percent and it is distributed in the  Figs. 9 and 10). Note that in Fig. 9 for the PAC equal to 8 and
form of a sine function (see Fig 6). It can be concluded that the  in Fig. 10 for the PAC equal to 0.5, the iterative process con-
inverse design concept is quite feasible for multihole con- verged to local minima. i
figurations. Note that when the error was decreased to 0.829 Also, the third test case, using a PAC of 10, resulted in an ’
percent (Fig. 5b), one of the three holes converged to a large infeasible solution, that is, the radius of one of the circular
hole located near the center. The other two holes became holes became negative. The conclusion is that too big a PAC
negligibly small in comparison with the large hole (Fig. 5b). will create a large E*(x) value, so the hole radius derived from
The third test case was used to prove that for an arbitrarily  the quadratic interpolation will fall below a physically mean-
shaped blade, good accuracy can be obtained between the ingful value. The conclusion is that PAC should be of the
BEM approximate solutions and the inverse optimization order one.
solutions. The rate of convergence of any optimum search technique is
The contour T, used in this case was a realistic turbine blade  highly dependent on the given function E*. In certain prob-
(Fig. 8). The variable temperature distribution specified on the lems proper scaling can be performed so as to make the con-
surface ', can be seen in Fig. 7 and does not represent any ac- tours of constant error as circular as possible. This can
tually measured value. The results of the inverse design pro- significantly accelerate the rate of convergence. Unfortunate-
cedure are listed in Table 2 and the evolutionary history of the ly, the E*(x) in this inverse design problem is an implicit func-
holes can be seen in Fig. 8. tion of x and the scaling technique is hard to apply.
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Fig. 7 Temperature distribution prescribed on I'y, test case 3
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The problem of failing to find the global minimum might be
resolved in any optimization technique by recomputing the
problem with different initial guesses [13}. The initial variables
should be systematically chosen for good distribution over the
variable space until a sufficiently low value of E, has been
located.

Summary

An efficient inverse design procedure for multiple circular
holes (coolant flow passages) in nonhomogeneous turbine
blades has been developed. The work is accomplished by
coupling the direct boundary element method and the sequen-
tial unconstrained minimization technique.

The specified heat flux distribution on the outer surface of
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the blade is iteratively approached while satisfying the
prescribed temperature distributions on the outer surface of
the blade and on surfaces of the holes by a successive adjust-
ment of the sizes and locations of the holes. Also included are
two manufacturing constraints concerning the minimal
allowable blade wall thickness and hole spacing.

This procedure can be successfully applied to the inverse
design of coated turbine blade multiple coolant flow passage
shapes. In earlier works [1-4] it was demonstrated that the
coolant flow passage shapes can be changed from circular to
other families of noncircular holes by adjusting the relation
between the independent variables in the optimization objec-
tive function. It can also be revised to be used for the inverse
design and analysis of the transient thermal problems or
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coupled with forced convection boundary conditions on the
coolant flow passage walls if the coolant temperature and heat
transfer coefficients are provided.

References

1 Kennon, S. R., *‘Novel Approaches to Grid Generation, Inverse Design,
and Acceleration of Iterative Schemes,”” M.S. Thesis, Dept. of Aerospace
Engineering and Engineering Mechanics, University of Texas at Austin, May
1984.

2 Kennon, S. R., and Dulikravich, G. S., *‘The Inverse Design of Internally
Cooled Turbine Blades,” ASME JOURNAL OF ENGINEERING rorR GAs TURBINES
AND POWER, Vol. 107, 1985, pp. 123-126.

3 Kennon, S. R., and Dulikravich, G. S., ‘‘Inverse Design of Multiholed In-
ternally Cooled Turbine Blades,”” Proceedings of the International Conference
on Inverse Design in Engineering Sciences (ICIDES), G. S. Dulikravich, ed.,
University of Texas at Austin, Oct. 17-18, 1984, pp. 217-240.

4 Kennon, S. R., and Dulikravich, G. S., “‘Inverse Design of Coolant Flow
Passage Shapes With Partially Fixed Internal Geometries,”’ ASME Paper No.
85-GT-118, 1985.

282/ Vol. 108, OCTOBER 1986

s Brebbia, C. A., et al., Boundary Element Techniques, Springer-Verlag,
Berlin-Heidelberg, 1984.

6 Symm, G. T., “The Robin Problem in a Multiply-Connected Domain.”’
in: Boundary Element Methods in Engineering, Proceedings of the Fourth Inter-
national Seminar, Southampton, England, Sept. 1982.

7 Christiansen, S., “‘Integral Equations Without a Unigue Solution Can Be
Made Useful for Solving Some Plane Harmonic Problems,”” J. Inst. Math. Ap-
plics., Vol. 16, 1975, pp. 143-159.

§ Jaswon, M. A., “Integral Equation Methods in Potential Theory,” I
Proc. Roy. Soc. (A), Vol. 275, 1963, pp. 23-32.

9 Hayes, J., and Kellner, R., “The Eigenvalue Problem for a Pair of Cou-
pled Integral Equations Arising in the Numerical Solution of Laplace’s Equa-
tion,” SIAM J. Appl. Math., Vol. 22, 1972, pp. 503-513.

10 Vanderplats, G. N, Numerical Optimization Techniques for Engineering
Design: With Applications, McGraw-Hill, 1984.

11 Carroll, C. W., “*An Operations Research Approach to the Economic Op-
timization of a Kraft Pulping Process,”” Ph.D. Thesis, Institute of Paper
Chemistry, Appleton, W1, 1959.

12 Chiang, T. L., and Dulikravich, G. S., «CFD8503-FORTRAN Program
for Inverse Design of Coolant Flow Passages in Composite Turbine Blades,”
Computational Fluid Dynamics UTCFD Report 200-85, Dept. of Aerospace
Eng. and Eng. Mechanics, University of Texas at Austin, Sept. 1985.

13 Daniels, R. W., An Introduction to Numerical Methods and Optimization
Techniques, Elsevier North-Holland, New York, 1978.

Transactions of the ASME




