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Abstract. In this chapter we present a hybrid approach to optimization problems, where 
we use deterministic and stochastic/evolutionary optimization algorithms. The basic 
idea is to start with a non-determinist method in order to reduce the search-space to a 
region where the global minima is located.  At this point an automatic switch to a 
deterministic method is performed in order to obtain a rapid convergence to the global 
extreme. A revision of some well-known optimization algorithms is presented, followed 
by a comparison among the different optimization techniques and the application of the 
hybrid method to several mathematical functions having multiple extrema. 
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1 INTRODUCTION 
Classical optimization techniques are typically based on deterministic models as in 

the case of the various gradient-like methods: Steepest Descent method1-4, Conjugate 
Gradient method1-26, Newton-Raphson method1-4, quasi Newton methods1-4 and others. 
However, in spite of their fast convergence rate, such techniques are strongly dependent 
on the initial guess used for the optimization task, especially when dealing with 
problems containing a large number of local minima. 

Evolutionary methods try to mimic the behavior of species, such as birds (Particle 
Swarm method27-30), ants (Ant Colony optimization31) and others. Several of them, as in 
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the case of the Genetic Algorithm methods32, try to mimic the Evolutionary Theory of 
Species, proposed by Darwin33. These kinds of methods are more likely to find global 
minima than the deterministic methods. However, they are, in general, slower than the 
former ones. The objective of so-called Hybrid Optimization methods34-38 is to take 
advantage of the robustness of the evolutionary methods and the fast convergence rate 
of the deterministic methods. The basic idea is to start with an evolutionary method in 
order to reduce the large initial search space to a narrow region where the determinist 
method is then employed to rapidly locate the minima.  
 

2 DETERMINISTIC METHODS 
In this section some deterministic methods like the Steepest Descent method, the 
Conjugate Gradient method, the Newton-Raphson and quasi Newton methods will be 
discussed. Some practical aspects and limitations of such methods will be addressed. 

 

2.1. Steepest Descent Method1-4

The most basic gradient-based method is the Steepest Descent method. Some of the 
concepts developed here will be used in the next sections, where we will discuss more 
advanced methods. The basic idea of this method is to “walk” in the opposite direction 
of the locally highest variation of the objective function, in order to locate the maximum 
or minimum value of it. This can be exemplified in Figure 1. 

 

 

Minimum 

Initial guess 

Figure 1: Convergence history for the Steepest Descent method. 

 
The objective function can be mathematically stated as 

( ) { }NxxxUU ,...,,; 21== xx  (1)

The direction in which the objective function U varies most rapidly is the direction of 
gradient of U. Thus, for the case with two variables (Figure 1) the gradient is 
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The iterative process for finding the minimum value of the objective function can be 
written in the most general terms as 

11 ++ += kkkk dxx α  (3)

where x is the vector of variables being optimized, α is the search step size, d is the 
direction of descent and k is a counter for the iterations. For the Steepest Descent 
method, the direction of descent is given by 
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)(1 kk U xd −∇=+  (4)

In spite of this being the natural choice for the direction of descent, it is not very 
efficient as can be seen in Figure 1. Usually, the method starts with large variations in 
the objective function, but as the minimum of the objective function is being reached, 
the convergence rate of this method becomes very low. 

The optimum choice for the search step size is the one that causes the maximum 
variation in the objective function. Thus, using the iterative procedure given by equation 
(3) and the definition of the objective function (1), we have that at iteration level k + 1 

)()( 11 ++ += kkkk UU dxx α  (5)

The optimum value of the step size α is obtained by solving 
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Using the chain rule 
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or 
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However, from equation (3) it follows that 
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Substituting equation (9) into (8) and (6), it follows that for Steepest Descent (Figure 2) 

( )[ ] ( ) 0,1 =∇∇ + kTk UU xx  (10)

Thus, the optimum value of the search step size is the one that makes the gradients of 
the objective function at two successive iterations mutually orthogonal (Figure 1). 

 
Figure 2: Iterative procedure for the Steepest Descent method. 
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In “real life” applications it is not possible to use equation (10) to evaluate the search 
step size. Thus, some univariate search methods need to be employed in order to find 
the best value of the search step size at each iteration. In the case of a unimodal 
function, some classical procedures can be used, such as the dichotomous search2,3, 
Fibonacci search2,3, golden search2,3 and cubic interpolation39, among others. However, 
for some realistic cases, the variation of the objective function with the search step size 
is not unimodal and then, more robust techniques are presented. The first one is the 
exhaustive search method and the second one is a technique based on exhaustive 
interpolation. 

 
(a) Exhaustive Search2,3

This method is one of the less efficient search methods available for sequential 
computation (which means not parallel computation). However, it is the most utilized 
approach. Let us suppose, for example, that we are on a highway searching for a gas 
station with the lowest price of gasoline within an interval of five miles. If we do not 
have a newspaper or a telephone, the best way to do this is to go to each gas station and 
check the price and then determine the lowest value. This is the basis of the Exhaustive 
Search method. This method serves as an introduction to the next method, which is 
based on splines. 

The basic idea consists in uniformly dividing the domain that we are interested in 
(the initial uncertainty region), and finding the region where the maximum or minimum 
value are located. Let us call this domain I0. Let us suppose, for instance, the situation 
shown in Figure 3, where an uncertainty interval I0 was divided into eight sub regions, 
which are not necessarily the same size.  

The objective function is evaluated at each of the nine points shown in the previous 
figure. From this analysis, we obtain 
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(11)

Thus, the maximum point must be located between x4 and x6. Notice that we cannot 
say that the optimum is located between x4 and x5, nor between x5 and x6, since a more 
refined grid could not only indicate this. 
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Figure 3: Exhaustive Search method. 

Thus, the final uncertainty interval I is (x6-x4) and the optimum point is located 
somewhere inside this interval. It can be shown2,3 that I is given by 
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where n is the number of objective functions evaluated. Notice that, once I is found, the 
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process can be restarted making I0 = I and a more precise location for the maximum can 
be found. However, its precise location can never be reached. 

In terms of sequential computation, this method is very inefficient. However, if we 
have a hypothetically large number of computers, all objective functions at each point in 
I0 can be evaluated at the same time. Thus, for the example shown in Figure 3, for n = 9, 
if we can assign the task of calculating the objective function at each point to an 
individual computer, the initial uncertainty region is reduced by 5 times within the time 
needed to just perform one calculation of the entire region using a single computer. 
Other more sophisticated methods, such as the Fibonacci method, for example, need 
sequential evaluations of the objective function. The Fibonacci method, for example, 
requires four objective function evaluations for the same reduction of the uncertainty 
region. Thus, in spite of its lack of efficiency in single processor applications, the 
Exhaustive Search method may be very efficient in parallel computing applications. A 
typical parallel computing arrangement is where one computer is the master and the 
other computers perform the evaluations of the objective function at each of the 
locations. 

 
(b) Exhaustive Interpolation Search 

This method is an improvement over the previous one, in that it requires fewer 
calculations to find the location of the minima. The method starts as the previous one, 
where domain is divided into several regions, where the objective functions are 
evaluated. The objective function is evaluated at a number of points in this domain. 
Next, a large number of points needs to be generated inside this domain and the 
objective function at these new points is estimated by spline fitting at the original points 
and interpolating at the new points using cubic splines40, B-splines41, kriging42 or other 
interpolants. Interrogating these interpolated values we can find the region where the 
maximum or minimum values are located. The process can be repeated until a 
sufficiently small interval of uncertainty is obtained. 

 

3.2. Conjugate Gradient Method1-26

The Steepest Descent method, in general, converges slowly for non-quadratic functions, 
since optimum search step sizes produce orthogonal gradients between two successive 
iterations. The Conjugate Gradient method tries to improve the convergence rate of the 
Steepest Descent method by choosing the directions of descent that reach the minimum 
value of the objective function faster. The iterative process for this method is given by 
the same equation used in the Steepest Descent method, equation (3). The difference is 
in the formulation for the direction of descent, which, for the Conjugate Gradient 
method, is given as a conjugation of the gradient and the direction of descent of the 
previous iteration 

( ) qkkkkk ddxd ψγ ++−∇= −+ 11  (13)

where γk and ψk are conjugation coefficients. The superscript q in equation (14) denotes 
the iteration number where a restarting strategy is applied to the iterative procedure of 
the Conjugate Gradient method. Restarting strategies for the conjugate gradient method 
of parameter estimation were suggested by Powell15 in order to improve its convergence 
rate. Different versions of the Conjugate Gradient method can be found in the literature 
depending on the form used for the computation of the direction of descent given by 
equation (14)1,5,6,7-19. In the Fletcher-Reeves version, the conjugation coefficients γk and 
ψk are obtained from the following expressions1,5,6,9,11-16
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0=kψ , for k = 0,1,2,… (14.b)

In the Polak-Ribiere version of the Conjugate Gradient method1,6,8-10,15,18 the 
conjugation coefficients are given by 
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Based on a previous work by Beale19, Powell15 suggested the following expressions 
for the conjugation coefficients, which gives the so-called Powell-Beale’s version of the 
Conjugate Gradient method9,15,19
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In accordance with Powell15, the application of the conjugate gradient method with 
the conjugation coefficients given by equations (16) requires restarting when gradients 
at successive iterations tend to be non-orthogonal (which is a measure of the local non-
linearity of the problem) and when the direction of descent is not sufficiently downhill. 
Restarting is performed by making ψk = 0 in equation (14). 

The non-orthogonality of gradients at successive iterations is tested by the following 
equation 

( ) ( ) 21 2.0)()]([ kkTkABS xxx ∇≥∇∇ −  (17.a)

where ABS (.) denotes the absolute value. 
A non-sufficiently downhill direction of descent (i.e., the angle between the direction 

of descent and the negative gradient direction is too large) is identified if either of the 
following inequalities is satisfied 

( ) ( ) 2
2.1][ kkTk xxd ∇−≤∇  (17.b)

( ) ( ) 2
8.0][ kkTk xxd ∇−≥∇  (17.c)

We note that the coefficients 0.2, 1.2 and 0.8 appearing in equations (17.a-c) are 
empirical determined and are the same values used by Powell15. 

In Powell-Beale’s version of the conjugate gradient method, the direction of descent 
given by equation (13) is computed in accordance with the following algorithm for k ≥ 
115: 

STEP 1: Test the inequality (17.a). If it is true set q = k-1.  
STEP 2: Compute γk with equation (16.a). 
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STEP 3: If k = q+1 set ψk = 0. If k ≠ q+1 compute ψk with equation (16.b). 
STEP 4: Compute the search direction dk+1 with equation (13). 
STEP 5: If k ≠ q+1 test the inequalities (17.b,c). If either one of them is satisfied set  

q = k-1 and ψk=0. Then recompute the search direction with equation (13). 
 
The Steepest Descent method, with the direction of descent given by the negative 

gradient equation, would be recovered with γk = ψk = 0 for any k in equation (13). We 
note that the conjugation coefficients γk given by equations (14.a), (15.a) and (16.a) are 
equivalent for quadratic functions, because the gradients at different iterations are 
mutually orthogonal1,15.  

The same procedures used for the evaluation of the search step size in the Steepest 
Descent method can be employed here. Figure 4 illustrates the convergence history for 
the Fletcher-Reeves version of the Conjugate Gradient method for the same function 
presented in Figure 1. One can see that the Conjugate Gradient method is faster than the 
Steepest Descent. It is worth noting that the gradients between two successive iterations 
are no longer mutually orthogonal. 

 

 
Figure 4: Convergence history for the Fletcher-Reeves version of the Conjugate Gradient method. 

 
Colaço and Orlande25 presented a comparison of Fletcher-Reeves’, Polak-Ribiere’s 

and Powell-Beale’s versions of the conjugate gradient method, as applied to the 
estimation of the heat transfer coefficient at the surface of a plate. This inverse problem 
was solved as a function estimation approach, by assuming that no information was 
available regarding the functional form of the unknown. Among the three versions 
tested for the Conjugate Gradient method, the method suggested by Powell and Beale 
appeared to be the best, as applied to the cases examined in that paper. This algorithm 
did not present the anomalous increase of the functional as observed with the other 
versions, and its average rates of reduction of the functional were the largest. As a 
result, generally, the smallest values for the RMS error of the estimated functions were 
obtained with Powell-Beale’s version of the conjugate gradient method. 

Figure 5 shows the iterative procedure for the Fletcher-Reeves version of the 
Conjugate Gradient method. 
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Figure 5: Iterative procedure for the Fletcher-Reeves version of the Conjugate Gradient method. 

 

3.3. Newton-Raphson Method1-4

While the Steepest Descent and the Conjugate Gradient methods use gradients of the 
objective function in their iterative procedures, the Newton-Raphson method uses 
information of the second derivative of the objective function in order to achieve a 
faster convergence rate (which does not necessarily mean a shorter computing time). 

Let us consider a function U(x), which is, at least, differentiable twice. The Taylor 
expansion of U(x) around a vector h is given by 

( ) ( )32 )(D
2
1)()( hhxhhxxhx OUUUU TT ++∇+=+  

(18)

where ∇U(x) is the gradient (vector of 1st order derivatives) while D2U(x) is the Hessian 
(matrix of 2nd order derivatives). 

If the objective function U(x) is differentiable twice, then the Hessian is always 
symmetrical, and we can write 

( ) hxxhx )(D)( 2UUU +∇≅+∇  (19)

The optimum is obtained when the left side of equation (19) vanishes. Thus, we have 

[ ] ( )xxh UUoptimum ∇−≅
−12 )(D  (20)

and the vector that optimizes the function U(x) is 

( ) [ ] ( )xxxhx UUoptimum ∇−≅+
−12 )(D  (21)

Thus, introducing a search step size, which can be used to control the rate of 
convergence of the method, we can rewrite the Newton-Raphson method in the form of 
the equation (3) where the direction of descent is given by 

[ ] ( )kkk UU xxd ∇−=
−+ 121 )(D  (22)

The Newton-Raphson method is faster than the Conjugate Gradient method as 
demonstrated in Figure 6. However, the calculation of the Hessian matrix coefficients 
takes a long time to evaluate. Figure 7 shows the iterative procedure for the Newton-
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Raphson method. Some other methods which do not require second order derivatives, 
so-called quasi Newton methods, will be addressed in the next section. 

 

 
Figure 6: Convergence history for the Newton-Raphson method. 

 

 
Figure 7: Iterative procedure for the basic Newton-Raphson method implementation. 

 

3.4. Quasi Newton Methods1-4

These kinds of methods try to calculate the Hessian appearing in the Newton-Raphson 
method in a manner that does not involve second order derivatives. Usually they 
employ approximation for the Hessian based only on first order derivatives. Thus, they 
have a slower convergence rate than the Newton-Raphson method, but they are 
computationally faster. 

Let us define a new matrix H, which is an approximation to the inverse of the 
Hessian as  

[ ] 12 )(D −
= kk U xH  (23)

Thus, the quasi Newton methods follow the general iterative procedure given by 
equation (4) where the direction of descent is given by 

( )kkk U xHd ∇−=+1  (24)

The matrix H for quasi-Newton methods is iteratively calculated as 
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111 −−− ++= kkkk NMHH  for k = 1,2,… (25.a)

IH =k  for k = 0 (25.b)

where I is the identity matrix. Note that, for the first iteration, the quasi-Newton method 
starts as the Steepest Descent method.  

Different quasi-Newton methods can be found depending on the choice for the 
matrices M and N. For the Davidon-Fletcher-Powell (DFP) method43,44, such matrices 
are given by 
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where 

( ) ( )11 −− ∇−∇= kkk UU xxY  (26.c)

Figure 8 shows the results for the minimization of the objective function shown 
before, using the DFP method. One can see that its convergence rate is between the 
Conjugate Gradient method and the Newton-Raphson method. 

 

 
Figure 8: Convergence history for the DFP method. 

 
Note that, since the matrix H is iteratively calculated, some errors can be propagated 

and, in general, the method needs to be restarted after certain number of iterations39. 
Also, since the matrix M depends on the choice of the search step size α, the method is 
very sensitive to its value. A variation of the DFP method is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method45-48, which is less sensitive to the choice of the search 
step size. For this method, the matrices M and N are calculated as 
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Figure 9 shows the iterative procedure for the BFGS method. 
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Figure 9: Iterative procedure for the BFGS method. 

 
At this point it is of interest to explore the influence on the initial guess for the four 

methods introduced thus far. Usually, all these methods quickly converge to the 
minimum value if it is close to the initial guess. The Newton-Raphson method, 
however, without the search step size, moves to the extreme point closest to the initial 
guess, irregardless if it is a maximum, minimum or a saddle point. This is the reason 
why we introduce a search step size in equation (21). The search step size prevents the 
method from jumping to a maximum value when we look for a minimum and vice-
versa. Figures 10 and 11 show the influence of the initial guess for all four methods for 
a Rosenbrock “banana-shape” function. 

 

 
(a)   (b)   (c)   (d) 

Figure 10: First initial guess for the (a) Steepest Descent, (b) Conjugate Gradient, (c) Newton-Raphson 
and (d) DFP methods. 

 

 
(a)   (b)   (c)   (d) 

Figure 11: Second initial guess for the (a) Steepest Descent, (b) Conjugate Gradient, (c) Newton-Raphson 
and (d) DFP methods. 
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There are other classes of powerful deterministic methods, as for example, the 

Levenberg-Marquardt method49-50, which will not be discussed here. The reader is, 
however, encouraged to look at the references for a more comprehensive understanding 
of these methods. 

 

4. EVOLUTIONARY AND STOCHASTIC METHODS 
In this section methods like the Genetic Algorithms, Differential Evolution, Particle 
Swarm and Simulated Annealing will be addressed. Some practical aspects and 
limitations of such methods will be addressed. In section 5 we will combine this class of 
methods with the deterministic ones in so-called Hybrid Optimization methods. 

Evolutionary methods, as opposite to the deterministic methods, do not rely, in 
general, on a strong mathematical basis. They attempt to mimic nature in its process of 
searching for the optimum.  

 

4.1. Genetic Algorithms32

Genetic algorithms are heuristic global optimization methods that are based on the 
process of natural selection. Starting from a randomly generated population of designs, 
the optimizer seeks to produce improved designs from one generation to the next. This 
is accomplished by exchanging genetic information between designs in the current 
population, in what is referred to as the crossover operation. Hopefully this crossover 
produces improved designs, which are then used to populate the next generation32,51. 

The basic Genetic Algorithm works with a collection or population of potential 
solutions to the optimization problem. The algorithm works in an iterative manner. At 
each iteration, also called generation, three operators are applied to the entire population 
of designs. These operators are selection, crossover, and mutation. For the operators to 
be effective, each potential solution or design must be represented as a collection of 
finite parameters, also called genes. Each design must have a unique sequence of these 
parameters that define it. This collection of genes is often called the chromosome. The 
genes themselves are often encoded as binary strings though they can be represented as 
real numbers. The length of the binary string determines how precisely the value, also 
know as the allele, of the gene is represented. 

The Genetic Algorithm applied to an optimization problem proceeds as follows. The 
process begins with an initial population of random designs. Each gene is generated by 
randomly generating 0’s and 1’s. The chromosome strings are then formed by 
combining the genes together. This chromosome defines the design. The objective 
function is evaluated for each design in the population. Each design is assigned a fitness 
value, which corresponds to the value of the objective function for that design. In the 
minimization case, a higher fitness is assigned to designs with lower values of the object 
function.  

Next, the population members are selected for reproduction, based upon their fitness. 
The selection operator is applied to each member of the population. The selection 
operator chooses pairs of individuals from population who will mate and produce an 
offspring. In the tournament selection scheme, random pairs are selected from the 
population and the individual with the higher fitness of each pair is allowed to mate. 

Once a mating pair is selected, the crossover operator is applied. The crossover 
operator essentially produces new designs or offspring by combining the genes from the 
parent designs in a stochastic manner. In the uniform crossover scheme, it is possible to 
obtain any combination of the two parent’s chromosomes. Each bit in each gene in the 
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chromosome is assigned a probability that crossover will occur (for example, 50 % for 
all genes). A random number between 0 and 1 is generated for each bit in each gene. If a 
number greater than 0.5 is generated then that bit is replaced by the corresponding bit in 
the gene from the other parent. If it is less than 0.5, the original bit in the gene remains 
unchanged. This process is repeated for the entire chromosome for each of the parents. 
When complete, two offsprings are generated, which may replace the parents in the 
population. 

The mutation process follows next. When the crossover procedure is complete and a 
new population is formed, the mutation operator is applied. Each bit in each gene in the 
design is subjected to a chance for a change from 0 to 1, or vice versa. The chance is 
known as the mutation probability, which is usually small. This introduces additional 
randomness into the process, which helps to avoid local minima. Completion of the 
mutation process signals the end of a design cycle. Many cycles may be needed before 
the method converges to an optimum design. 

 

4.2. Differential Evolution52

The Differential Evolution method is an evolutionary method based on Darwin’s theory 
of evolution of the species33. This non-gradient based optimization method was created 
in 199552 as an alternative to the Genetic Algorithm methods. Following Darwin’s 
theory, the strongest members of a population will be more capable of surviving in a 
certain environmental condition. During the mating process, the chromosomes of two 
individuals of the population are combined in a process called crossover. During this 
process mutations can occur, which can be good (individual with a better objective 
function) or bad (individual with a worse objective function). The mutations are used as 
a way to escape from local minima. However, their excessive usage can lead to a non-
convergence of the method. 

The method starts with a randomly generated population in the domain of interest. 
Thus successive combinations of chromosomes and mutations are performed, creating 
new generations until an optimum value is found. 

The iterative process is given by 

( )[ ]γβαxx −++=+ Fk
i

k
i 21

1 δδ  (28)

where 
xi is the i-th individual of the vector of parameters. 
α, β and γ are three members of population matrix P, randomly choosen. 
F is a weight function which defines the mutation (0.5 < F < 1). 
k is a counter for the generations. 
δ1 and δ2 delta Dirac functions that define the mutation. 
In this minimization process, if U(xk+1) < U(xk), then xk+1 replaces xk in the 

population matrix P. Otherwise, xk is kept in the population matrix. 
The binomial crossover is given as 

CRR   if   ,1
CRR   if   ,01

>
<=δ

                 
CRR   if   ,0

CRR   if   ,12

>
<=δ (29.a,b)

where CR is a factor that defines the crossover (0.5 < CR < 1) and R is a random 
number with uniform distribution between 0 and 1. 

Figure 12 shows the iterative procedure for the Differential Evolution method. 
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Figure 12: Iterative procedure for the Differential Evolution method. 
 

4.3. Particle Swarm27-30

This non-gradient based optimization method was created in 1995 by an electrical 
engineer (Russel Eberhart) and a social psychologist (James Kennedy)27-30 as an 
alternative to the Genetic Algorithm methods. This method is based on the social 
behavior of various species and tries to equilibrate the individuality and sociability of 
the individuals in order to locate the optimum of interest. The original idea of Kennedy 
and Eberhart came from the observation of birds looking for a nesting place. When the 
individuality is increased the search for alternative places for nesting is also increased. 
However, if the individuality becomes too high the individual might never find the best 
place. In other words, when the sociability is increased, the individual learns more from 
their neighbor’s experience. However, if the sociability becomes too high, all the 
individuals might converge to the first place found (possibly a local minima). 

In this method, the iterative procedure is given by 
11 ++ += k

i
k
i

k
i vxx  (30.a)

( ) ( )k
igi

k
iii

k
i

k
i xprxprvv −+−+=+

21
1 ββα  (30.b)

where: 
xi is the i-th individual of the vector of parameters. 
vi = 0, for k = 0. 
r1i and r2i are random numbers with uniform distribution between 0 and 1. 
pi is the best value found for the vector xi. 
pg is the best value found for the entire population. 
0 < α < 1; 1 < β < 2 
In equation (30.b), the second term on the right hand side represents the individuality 

and the third term the sociability. The first term on the right-hand side represents the 
inertia of the particles and, in general, must be decreased as the iterative process 
proceeds. In this equation, the vector pi represents the best value ever found for the i-th 
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component vector of parameters xi during the iterative process. Thus, the individuality 
term involves the comparison between the current value of the i-th individual xi and its 
best value in the past. The vector pg is the best value ever found for the entire 
population of parameters (not only the i-th individual). Thus the sociability term 
compares xi with the best value of the entire population in the past. 

Figure 13 shows the iterative procedure for the Particle Swarm method. 
 

 
Figure 13: Iterative procedure for the Particle Swarm method. 

 

4.4. Simulated Annealing53,54

This method is based on the thermodynamics of the cooling of a material from a liquid 
to a solid phase. If a liquid material (e.g. liquid metal) is slowly cooled and left for a 
sufficiently long time close to the phase change temperature, a perfect crystal will be 
created, which has the lowest internal energy state. 

On the other hand, if the liquid material is not left for a sufficient long time close to 
the phase change temperature, or, if the cooling process is not sufficiently slow, the 
final crystal will have several defects and a high internal energy state. This phenomena 
is similar to the quenching process used in metallurgical applications. 

The gradient-based methods move in directions that successively lower the objective 
function value when minimizing the value of a certain function or in directions that 
successively raise the objective function value in the process of finding the maximum 
value of a certain function. The Simulated Annealing method can move in any direction 
at any point in the optimization process thus escaping from possible local minimum or 
local maximum values. 

We can say that gradient-based methods “cool down too fast”, going rapidly to an 
optimum location which, in most cases, is not the global, but a local one. As opposed to 
gradient-based methods, nature works in a different way. Consider, for example, the 
Boltzmann probability function given as 

( ) ( )TKEeE /Prob −∝  (31)

This equation expresses the idea that a system in thermal equilibrium has its energy 
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distributed probabilistically among different energy states E where K is the Boltzmann 
constant. Equation (31) tells us that even at low temperatures, there is a chance, 
although small, that the system is at a high energy level. Thus, there is a chance that the 
system could get out of this local minimum and continue looking for another one, 
possibly the global minimum. 

Figure 14 shows the iterative procedure for the Simulated Annealing method. The 
procedure starts generating a population of individuals of the same size of the number 
of variables (n = m), in such a way that the population matrix is a square matrix. Then, 
the initial temperature (T), the reducing ratio (RT), the number of cycles (Ns) and the 
number of iterations of the annealing process (Nit) are selected. After Ns*n function 
evaluations, each element of the step length V is adjusted so that approximately half of 
all function evaluations are accepted. The suggested value for the number of cycles is 
20. After Nit*Ns*n function evaluations, the temperature (T) is changed by the factor RT. 
The value suggested for the number of iterations by Corana et al. 53 is MAX(100, 5*n). 

The iterative process follows the following equation: 

iii RVxx += 01  (32)

Here, R is a random number with a uniform distribution between 0 and 1 and V is a 
step-size which is continuously adjusted. 
 

 
Figure 14: Iterative procedure for the Simulated Annealing method. 

Initially, it randomly chooses a trial point within the step length V (a vector of length 
n) of the user selected starting point. The function is evaluated at this trial point (xi

1) and 
its value is compared to its value at the initial point (xi

0). In a minimization problem, all 
downhill moves are accepted and the algorithm continues from that trial point. Uphill 
moves may be accepted; the decision is made by the Metropolis criteria. It uses T 
(temperature) and the size of the downhill move in a probabilistic manner 
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( ) ( )[ ] TxUxU iieP /01 −=  (33)

The smaller T and the size of the uphill move are, the more likely that move will be 
accepted. If the trial is accepted, the algorithm moves on from that point. If it is rejected, 
another point is chosen instead for a trial evaluation.  

Each element of V is periodically adjusted, so that half of all function evaluations in 
that direction are accepted. The number of accepted function evaluations is represented 
by the variable Ni. Thus the variable r represents the ratio of accepted over total function 
evaluations for an entire cycle Ns and it is used to adjust the step length V. 

A decrease in T is imposed upon the system with the RT variable by using 

)(*)1( iTRTiT =+  (34)

where i is the i-th iteration. Thus, as T declines, uphill moves are less likely to be 
accepted and the percentage of rejections rises. Given the scheme for the selection for V, 
V falls. Thus, as T declines, V falls and Simulated Annealing focuses upon the most 
promising area for optimization. 

The parameter T is crucial in using Simulated Annealing successfully. It influences 
V, the step length over which the algorithm searches for optima. For a small initial T, 
the step length may be too small; thus not enough function evaluations will be 
performed to find the global optima. To determine the starting temperature that is 
consistent with optimizing a function, it is worthwhile to run a trial run first. The user 
should set RT = 1.5 and T = 1.0. With RT > 1.0, the temperature increases and V rises as 
well. Then the value of T must be selected that produces a large enough V. 
 

5. HYBRID OPTIMIZATION METHODS34-38

The Hybrid Optimization methods are not more than a combination of the deterministic 
and the evolutionary/stochastic methods, in the sense that they try to use the advantages 
of each of these methods. The Hybrid Optimization method usually employs an 
evolutionary/stochastic method to locate a region where the global extreme point is 
located and then automatically switches to a deterministic method to get to the exact 
point faster. The Hybrid Optimization method proposed here is quite simple 
conceptually, although its computational implementation is more involved. The global 
procedure is illustrated in Figure 15. The driven module is very often the Particle 
Swarm method, which often performs most of the optimization task. When certain 
percent of the particles find a minima (let us say, some birds already found their best 
nesting place), the algorithm switches automatically to the Differential Evolution 
method and the particles (birds) are forced to breed. If there is an improvement in the 
objective function, the algorithm returns to the Particle Swarm method, meaning that 
some other region is more prone to having a global minimum. If there is no 
improvement on the objective function, this can indicate that this region already 
contains the global value expected and the algorithm automatically switches to the 
BFGS method in order to find its location more precisely. In Figure 15, the algorithm 
returns to the Particle Swarm method in order to check if there are no changes in this 
location and the entire procedure repeats itself. After some maximum number of 
iterations is performed (e.g., five) the process stops. 

In the Particle Swarm method, the probability test of the Simulated Annealing is 
performed in order to allow the particles (birds) to escape from local minima, although 
this procedure most often does not make any noticeable improvement in the method. 

Notice that this Hybrid Optimization method differs considerably from the earlier 
version that performed automatic switching among six classical optimization modules55. 
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Figure 15: Global procedure for the Hybrid Optimization method. 

 

6. COMPARISONS AMONG THE DETERMINISTIC, EVOLUTIONARY AND 
HYBRID METHODS 
Since the evolutionary and the stochastic methods use random numbers in their 
formulations, each optimization with such a method leads to slightly different results. 
However, this section is included to give the reader a brief insight in the basic 
performance differences among various methods. The functions to be analyzed do not 
correspond to a physical model. Rather, they are functions constructed in such a way 
that they have several local minima, making the optimization process more challenging. 
In all test cases presented the maximum allowed number of iterations was very large. 
The BFGS method stopped when the gradient of the objective function changed its sign, 
meaning that a local or global minimum was found. 

 
(a) Minimization of the Griewangk’s function43

For this first case, we will show the performance of several of the optimizers to find 
the optimum of the Griewangk’s function, which is defined as 
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(35)

The global minima for this function is located at x = 0 and is U(x) = 0. For a two-
dimensional test case, such function is shown in Figure 16 in three levels of local 
resolution. One can see that this function has an extremely large number of local 
minima, making the optimization task of finding the global minimum quite difficult. 

 

 
Figure 16: Griewangk’s function. 
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Figure 17 shows the results for the optimization task using the (a) BFGS, (b) 
Differential Evolution, (c) Simulated Annealing, (d) Particle Swarm and (e) Hybrid 
Optimization methods. One can see that the evolutionary/stochastic methods are a little 
bit better than the BFGS method. However, only the Hybrid Optimization method is 
capable of locating the global optimum value of this function. 
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Figure 17: Comparison of the optimizers for the Griewangk’s function. 

 
(b) Minimization of the Levy function43

The Levy function, which is defined as 

( ) ( ) ( )( ) ( ) (( )

[5,5]

2sin113sin113sin 2

1

1

1
22

1
2

−∈

+−++−+= ∑
−

=

+

x

xxxxxU nn

n

i

ii πππ )
 

(36)

will now be analyzed for a test case with 7 variables. The global minima for this 
function is located at x = (1,1,1,1,1,1,-4.754402) and its value is U(x) = -11.  

Figure 18 shows that the Simulated Annealing method is the worst method in this 
case with the BFGS method performing only slightly better. The Differential Evolution, 
Particle Swarm and Hybrid Optimization methods were capable of minimizing this 
function. However, the last two methods were faster, while the Hybrid Optimization 
method was the fastest. 
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Figure 18: Comparison of the optimizers for the Levy function using the (a) BFGS, (b) Differential 
Evolution, (c) Simulated Annealing, (d) Particle Swarm and (e) Hybrid Optimization method. 

 
(c) Minimization of the Rosen’s function43

For this case, we will show the performance of several of the optimizers to find the 
optimum of the Rosen’s function, which is defined as 
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The global minima for this function is located at x = (5.33006,5.33006) and its value 
is U(x) = -18.568. For a two-dimensional test case, such function is shown in Figure 19. 
One can see that the function has four minimums and one maximum. 
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Figure 19: Rosen’s function. 

 
Figure 20 shows that all methods, except the Particle Swarm were capable of 

minimizing this relatively simple function. The faster ones were the Differential 
Evolution and the Hybrid Optimization methods with the last one a little bit faster. 
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Figure 20: Comparison of the optimizers for the Rosen’s function using the (a) BFGS, (b) Differential 
Evolution, (c) Simulated Annealing, (d) Particle Swarm and (e) Hybrid Optimization method. 

 
(d) Minimization of the Schwefel’s function43

For this first case, we will show the performance of several of the optimizers to find 
the optimum of the Schwefel’s function, which is defined as 
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The global minima for this function is located at x = 420.9687 and its value is U(x) = 
-n*418.9829, where n is the number of variables. For a two-dimensional test case, such 
function is shown in Figure 21. One can see that the function has an extreme number of 
local minima, making the optimization task quite difficult. 

 

 
Figure 21: Schwefel’s function 

 
Figure 22 shows that only the Particle Swarm and the Hybrid Optimization methods 

were capable of fully minimizing this function, with the former been a little bit faster. 
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Figure 22: Comparison of the optimizers for the Schwefel’s function using the (a) BFGS, (b) Differential 
Evolution, (c) Simulated Annealing, (d) Particle Swarm and (e) Hybrid Optimization method. 

 
(d) Minimization of the Schubert’s function43

For this first case, we will show the performance of several of the optimizers to find 
the optimum of the Schubert’s function, which is defined as 
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The global minima for this function is U(x) = -24.062499, For a two-dimensional test 
case, such function is shown in Figure 23. One can see that the function has a large 
number of local minima, making the optimization task quite difficult. 
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Figure 23: Schubert’s function. 

 
Figure 24 shows that the BFGS and the Differential Evolution methods were not able 

to fully minimize this function. Among the other methods, the Hybrid Optimization was 
the fastest. 
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Figure 24: Comparison of the optimizers for the Schubert’s function using the (a) BFGS, (b) Differential 
Evolution, (c) Simulated Annealing, (d) Particle Swarm and (e) Hybrid Optimization method. 

 
From this brief comparison among the methods for various mathematical functions, 

we could see that the Hybrid Optimization method performed better in most of the test 
cases. It can reach the global minimum when other methods fail and it can reach it faster 
when the other methods work. For the next section we will show the application for 
some engineering test cases. 

 

7. AN ALTERNATIVE HYBRID OPTIMIZER 
In these examples, a slightly different Hybrid Optimization method was used55, which 
had the following optimization modules; the Davidon-Fletcher-Powell (DFP) Gradient 
method, a Genetic Algorithm (GA), the Nelder-Mead (NM) Simplex method44, quasi-
Newton algorithm of Pshenichny-Danilin (LM)56, Differential Evolution (DE), and 
Sequential Quadratic Programming (SQP)57. This Hybrid Optimization method is an 
older version of the one demonstrated previously in this Chapter, where some of the 
modules where discarded, due to their poor performance. Figure 25 shows a global 
procedure used for this older Hybrid Optimization method. In general, the Hybrid 
Optimization method described above has a performance equal or superior to this one. 

This older hybrid optimization method55 was successfully applied to problems 
involving the estimation of the diffusion coefficient and source terms38 as well as 
problems involving magnetohydrodynamics35-37 and electrohydrodynamics34.  

 
Design Variance 0

DFP

DE NM

Local Minimum

Bad Mutation

Stalls

Lost Generation

GA
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LM

SQP

Local 
Minimum
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Minimum

 
Figure 25: Global procedure for the older Hybrid Optimization method55
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