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ABSTRACT

A fast computer program, GRID3C, has been developed to generate multilevel
three-dimensional, C-type, periodic, boundary conforming grids for the calcu-
Tation of realistic turbomachinery and propeller flow fields. The technique
is based on two analytic functions that conformally map a cascade of semi-
infinite slits to a cascade of doubly infinite strips on different Riemann
sheets. Up to four consecutively refined three-aimensional grids can be auto-
matically generated and permanently stored on four different computer tapes.
Grid nonorthogonality is introduced by a separate coordinate shearing and
stretching performed in each of three coordinate directions. The grids can be
easily clustered closer to the blade surface, the trailing and leading edges
and the hub or shroud regions by changing appropriate input parameters. Hub
and duct (or outer free boundary) can have different axisymmetric shapes. A
vortex sheet of arbitrary thickness emanating smoothly from the blade trailing
edge is generated automatically by GRID3C. Blade cross-sectional shape, chord
tength, twist angle, sweep angle, and dihedral angle can vary in an arbitrary
smooth fashion in the spanwise direction. Input coordinates must be Cartesian,

while the output grid coordinates can be Cartesian or cylindrical.

INTRODUCTION

When numerically solving partial differential equations governing the flow
of fluid through realistically shaped configurations, exact boundary condi-
tions must be applied at correct locations. This is especially important when
calculating internal flows and flows that are governed by nonlinear partial
differential equations. Seemingly negligible alterations of geometrical shape
or flow conditions at the boundary can drastically change the basic features
of the flow field, for example, choking an originally unchoked flow or chang-
ing a shock-free flow into a shocked f]owl. The most economical and accu-
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rate way to numerically apply exact boundary conditions on solid boundaries is
to generate and use a computational grid that conforms to these surfaces (fig.
1). Recent numerical techniques do not require orthogonal gm‘ds2 because

they use locally isoparametric formulation when numerically determining deri-

vatives of geometric and flow variables. A widely accepted procedure for ac-

celerating an iterative solution process of the flow equations and for resol-

ving or capturing high flow gradients is to perform calculations on a sequence

3 usually

of several successively refined grids. The multigrid technique
requires four to six such grids. For realistic threedimensional configura-
tions the number of grid points to be generated is prohibitively large even
for inviscid flow calculations. Computational grids for such configurations
should be easy to regenerate if shock waves and vortex sheets are to be better
resolved or if the configuration of the solid boundaries changes with time.

An H-type grid (fig. 1) provides excellent resolution of the flow field at
upstream and downstream infinity. It is also the simplest grid to generate.
At the same time, H-type grid does not provide for an accurate treatment of
rounded leading and trailing edges and wastes points in the flow domains away
from the boundaries. An O-type grid represents the other extreme. It gives a
very poor resolution at 1nf1n1t1es4, thus creating a problem when Cauchy-
type boundary conditions must be enforced at the supersonic inflow boundary
(fig. 2). A grid of the O-type also does not provide desirable resolution in
the vicinity of the vortex sheet. An open trailing edge simulation of the
boundary layer displacement thickness effect cannot be readily incorporated.
Nevertheless, an O-type grid provides for accurate discretization of arbitrar-
ily blunt leading and trailing edges and requires a minimum number of grid
points. A combination of an O-type grid in the upstream region and an H-type
grid in the downstream region creates a C-type grid. This type of grid pro-
vides for a good treatment of all boundary and periodicity conditions in-
cluding wake treatment and supersonic exit flow, although it lacks an adequate
resolution at upstream infinity (fig. 1).

In turbomachinery and rotorcraft flow field calculations the flow field is
periodic and a geometrically periodic grid provides for a simple and accurate
way to enforce the flow periodicity. The simplest and fastest way to generate
nonorthogonal periodic grids is to avoid time-consuming techniques based on
the numerical solution of sets of partial differential equations whenever pos-
sible. Instead, a basic knowledge of complex variables and conformal mapping
can be used together with a few additional nonorthogonal coordinate shearings
and stretchings. A three-dimensional, periodic, O-type grid generator code
4 by using this technique, which guarantees that the
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grid lines of the same family do not intersect because the basis of the tech-
nique is conformal mapping. Another view of a three-dimensional, periodic

O-type grid is presented in figure 3.

The Computational Fluid Mechanics Branch of the NASA Lewis Research Center
provided computational Facilities used in this work. Dr. Charles Putt of NASA
Lewis Computer Services Division, Dr. Bharat Soni of Sverdrup Technology, Inc.,
and Mr. William Usab of MIT and United Technologies Research Center exercised

the computer codes and provided several grid displays.

SHEARING AND STRETCHING IN PHYSICAL SPACE

Conformal mapping can be applied only to two-dimensional plane surface
problems. A general procedure for creating such planes can be best described
in the case of a rotor mounted on a hub shaped like a doubly infinite circular
cylinder and confined inside a doubly infinite circular-cylinder-shaped duct.
The intermediate doubly infinite circular-cylinder-shaped surfaces intersec-
ting the blades can be viewed as planes when expressed in terms of (x,re) co-
ordinates. A standard procedure for creating three-dimensional blade shapes
is to specify local airfoil shapes on a number of input planes that are or-
thogonal to a straight radial line. This radial line (z axis in fig. 4) is
called a stacking axis, and local blade sweep and dihedral angles are measured
from that line (fig. 1). Input planes are defined by z = constant. Inter-
mediate cylindrical surfaces, which we seek for the next step in this grid
generation procedure are defined by r = constant. To obtain an intersection
contour between the blade surface and r = constant cylindrical surfaces, a
spline fitting and interpolation procedure is used along the blade. Input
airfoil (xi,yi) coordinates on z = constant planes are transformed into

cylindrical coordinates

X = x; (1)
o = arc tan(y./z.) (2)
ro= (y?+ z]?)l/2 (3)

Cylindrical coordinates (x,re) are interpolated at r = constant spanwise loca-
tions, thus defining blade cross sections on r = constant cylindrical surfaces.
On the other hand, realistically shaped hubs and ducts are not doubly in-
finite circular cylinders but axisymmetric surfaces. Therefore, the inter-
mediate surfaces are also axisymmetric and not cylindrical. Nevertheless, the



same grid generation technique can be used if a simple nonorthogonal shearing
(or normalization) and stretching of the radial coordinate (fig. 3) is per-
formed. Nonorthogonal (unidirectional) shearing of the r coordinate converts
the axisymmetric surfaces into cylindrical surfaces defined by R = constant.
Let subscripts H,T, and D designate R = constant surfaces corresponding to
hub,blade tip, and duct (or outer free boundary) location, respectively. Also
let the normalized radial coordinate be defined as

r <X1) - rH(xi)

T oG =T T “

The radial coordinate in the hub-to-tip region is stretched and sheared with

the following function

R = Ry * (RT - RH)((QIRT) + A sin(2n R/RT)) (5)

The following value was obtained from experience

RH = N/50.0 (6)

The stretching parameter, A, gives best results if
0.12 > A » 0.0 (7)

When A = 0, the cylindrical cutting surfaces R = constant are equidistantly
spaced from hub to tip. Let the normalized, sheared radial coordinate in the
region between the blade tip and the duct (or outer radial boundary) surface
be

*

R = (R - RT)/(RD” RT) (8)
The stretching function for the tip-to-duct domain is chosen to be
* *2
R =1.0+ (RH - gq)R+qR (9)

This function must have the same slope, g, at the location R = 1 as the
stretching function in the domain between the hub and the tip (eq. 5).

q = (1+ A - RYIR (10)

Combining the two stretching functions (eqs. 5 and 9) provides for a smooth
and continuous transformation from the physical r coordinate into the sheared
R coordinate (fig. 4). For a stator or rotor with no tip clearance, equation

9 is not needed.



Frequently, the input points are not clustered in the same regions on each
input plane. Moreover, the number of input points defining the blade cross
section on each input plane can vary from one input plane to the next. To
accurately determine intersection contours between the blade surface and the
axisymmetric surfaces, the corresponding input points must be located at the
same percentage of the blade chord length on each input plane. Implicitly,
this means that the number of input points must be the same on all input
planes. Therefore, these input points must be appropriately redistributed on
each input plane. This redistribution can be performed with respect to the

input airfoil contour coordinate defined as

S = [(Xi - Xi_l)z + (y1 - yi—l)Z]l/Z (11)

Then the input Cartesian coordinates can be expressed in terms of the input
airfoil contour coordinates. Coordinate s is measured clockwise around the
input airfoil contour, starting and ending at the trailing edge point. As it
was stated earlier, the number of contour points on the pressure surface must
be the same as the number of contour points on the suction surface. For non-
symmetric airfoils the lengths of these two contour lines are generally not
the same. Let ITS denote the trailing edge point on the suction side and ITP
denote the trailing edge point on the pressure side of the input airfoil.
Also, let LE denote the leading edge, that is, the point that is farthest from
the trailing edge. The normalized surface coordinate is defined as

S-S
S = . _1TP (12)
The redestribution of input points is performed with the following stretching
function

S - 1-338+311-(0-3Y (13)

where the exponent B should satisfy
1.4 > B > 1.0 (14)

When B = 1 the points are equidistantly spaced along the airfoil contour. The
points along the pressure surface are redistributed by using the formula

(15)



and the points along the suction surface are redistributed by using the formula

*
S = S 3 (16)

(sppg = sig) * (spg = sppp)

This redistribution of input coordinates x and y is performed with a cubic
spline fitting applied in the s direction. Interpolation is performed at S
locations. Spline fitting and interpolation are aliso used with respect to the
R coordinate in order to find the points on intersection contours between the
blade surface and the intermediate axisymmetric surfaces. Locations of those
points in the physical space will not be altered with the subsequent mapping-
remapping procedure.

The exact shape of the wake of arbitrary thickness is not known a priori.
To eliminate the need for specifying the location of the wake in the prepara-
tion of the input, the shape of the wake centerline is automatically generated

by using the simple polynomial expression

3 2
y = a(x —xTE) + b(x - XTE) + c(x - XTE) * YqE (17)
Here the trailing edge point coordinates are
Xpp = Xppp ¥ xppg)f2 (18)
and
Ye = Wprp ¥ pps)/2 (19)

The point where the wake centerline intersects the downstream-infinity cutoff
boundary is defined with the subscript EX. Let c be the average slope of the
pressure and suction surfaces of the airfoil at the trailing edge , and let d
be the slope of the expected flow angle at the exit boundary. Then the con-

stants a and b in equation 17 are

2= [xlc*d) - 2y Ix) (20)
and

b = [3y, - x, (2 + d)]/xj (21)
where

*w T XEx T XTE (22)



and

Yo = YEx T YTE (23)

Wake surface grid points are redistributed (stretched) with the formula

x* = (x - XTE)/XW - n sin(n(x - XTE)/Xw) (24)

The stretching exponent, n, is determined from the continuity of the slope of
the stretching functions at the trailing edge (egs. 13, 15, 16, 22, and 24)

n=1.05(1.0 - B/wa)/n (25)

If the wake has a finite thickness, that is, if the blade trailing edge is
open, coordinates of the points on the upper and lower surfaces of the wake
are determined by adding and subtracting the trailing edge half thickness.
The axial coordinate of the upper surface of the wake is determined from the

formula

xT =x + (XITS- xITP)/Z (26)

and that of the lower surface of the wake by the formula

1

X =x - (XITS_ xITP)/Z (27)

with similar expressions for the y coordinate. Superscripts u and 1 designate
the upper and lower surfaces of the wake, respectively.

CONFORMAL MAPPING AND REMAPPING

The conformal mapping portion of the present procedure for generating
three-dimensional, periodic C-type grids was originally used by Sockol to
generate orthogonal, two-dimensional, cascade C-type grids. If the blades are
straight, semiinfinite twisted plates of zero thickness, their intersections
with circular cylinders generates doubly infinite cascades of semi-infinite
straight slits on each of the (x,Re) planes (fig. 5). Each of these R = con-
stant planes can be defined in terms of complex variables

w = x * iRe (28)

The goal is to generate a boundary-conforming, periodic C-type grid on each of



the planes. This task is accomplished by conformally mapping the w plane via

an intermediate “circle" complex plane (fig. 6)
v =& * in (29)
into the interior of a "doubly infinite strip" plane (fig. 7)
u o= X+ iy (30)

Uniform grid in the u plane is then conformally remapped into the w plane,
thus generating the desired C-type grid. As shown by Socko]4 a single ana-
lytic function

W= Wt ei8 —;—(28 sin g + 2 cos 8 In(2 cos B))

+ e"18(1n Vv-ir ) -2cos 8 In (1l -v) (31)

where N 1is the number of blades and 8 is the local stagger angle on the R =
constant surface, conformally maps the interior of the unit circle in the v
plane to the interior of a periodic strip enveloping a semi-infinite slit in
the w plane. The center of the circle (v = 0) maps into upstream infinity in
the w plane and the point v = -1 maps into downstream infinity in the w plane.
The zero-thickness slit between the points v = 0 and v = -1 maps into the up-
per and lower periodic boundary of a periodic strip in the w plane. The
circle in the v plane maps into a semi-infinite straight siit in the w plane.
A doubly infinite cascade of semi-infinite straight slits in the w plane is
thus created by conformally mapping a doubly infinite cascade of Riemann
sheets (v planes) that are interconnected through the slits between the points

v =0and v = -1. Socko]4 used a simple analytic function

v o= tanh(u2/2) (32)

to conformally map the interior of a doubly infinite straight strip in the u
plane into the interior of a unit circle in the v plane. The lower strip
boundary (Y = -in /2) in the u plane maps into the circle in the v plane.
The upper strip boundary (Y = 0) maps into a zero-thickness slit between the
points v = 0 and v = -1. Axial infinities (X = #=) map into a single point
(v.=-1). The origin (X = 0;Y = 0) in the u plane maps into the origin (v =
0) in the v plane.



Realistically shaped blade airfoils are not straight semi-infinite lines
of zero thickness. A C-type grid generated with the use of equations 31 and
32 alone will not conform to the actual airfoil cascade shapes on R = constant
surfaces. To generate a C-type grid that conforms to the shape of the airfoil
and wake , several nonorthogonal coordinate shearings and stretchings are used.
Airfoil surface points are conformally mapped from the w plane via the v
plane into the u plane. As a result, the circle in the v plane becomes de-
formed (fig. 7), and the corresponding lower wall in the u plane becomes an
irreguiar line (fig. 8). The inverse of equation 31 cannot be analytically
obtained for staggered cascades. Therefore, a Newton-Raphson procedure is
used to iteratively evaluate on a point-by-point basis the pairs of (g,n)
coordinates corresponding to the given pairs of (x,Re) coordinates. By using
an analytic inverse of equation 32, that is,

.. 172
u o= [in (72-Y)] (33)

the deformed circle is conformally mapped from the v plane into the u

plane.

SHEARING AND STRETCHING IN COMPUTATIONAL SPACE

It should be pointed out that with the increase in stagger angle in the w
plane the image of the leading edge point shifts along the deformed circle in
the v plane and along the deformed lower boundary in the u plane. To in-
sure that the corresponding points along the periodic boundaries in the w
plane have the common values of x coordinate, their images in the u plane are
placed symmetrically along the Y = 0 line (fig. 9). At the same time these
periodic points are distributed with a simple stretching function

U U

Vo xY s e singen XYt o xbo ) (34)

ITS =~ “ITP

Superscript U denotes the upper wall (Y = 0) of the u plane and superscript
L denotes the lower irregular boundary of the u plane. The stretching
coefficient e 1is determined from experience as

e = 0.18 - 0.05 Tn(2Rn/Nt) (35)

where t is the local blade chord. The periodic grid points located in the
wake region are redistributed by using the expression

9



u u

J - fosin(Zn(1X17= Xjpe) /(X

U L U ))

MAXXP™ *ITS (36)

X7 = X

where MAXXP denotes the last point on the upper surface of the wake. The
stretching coefficient, f, is determined also from the experience as

0.10 > f > 0.05 (37)

Because only a finite length of the wake is conformally mapped from the w
plane into the u plane, the deformed strip in the u plane has a finite

length. The shape of the end wall boundaries in the u plane are determined so
that they meet the Tower boundary of the strip in the u plane almost orthogo-
nally (fig. 8). Consequently, grid orthogonality is well preserved at the
wake. Coordinates of the grid points inside the strip in the u plane are de-
termined from

Y = vyt + g sin(ay/vh)) (38)
and

x = xU+ (xb XY vty + ¢ osin(ayvty) (39)
where

0.30 > C > 0.15 (40)

g =C (1.0 -1.0/cosh h) (41)

h =5 (XU/XﬁAxxp ) (42)

Stretching coefficients C, g, and h are determined from experience and from
the condition that C-type grid 1ines in the w plane closely follow the wake
contour. Larger values of C generate grids suitable for viscous flow calcula-
tions, because grid layers are positioned closer to the blade and wake
surface.

The resulting two-dimensional nonorthogonal periodic grid in the u plane
is conformally mapped back into the w plane on a point-by-point basis. Final-
1y, determination of the physical r coordinates of the grid points on the
(x,Re) planes is obtained by reshearing the R coordinate (eqs. 4, 5, 8, and 9)
and fitting it with respect to the x coordinate with a cubic spline.

10



RESULTS

On the basis of the preceding analysis, a computer program GRID3C was de-
veloped and tested6. Program GRID3C consists of 1150 card statements and
requires approximately 500 K of computer memory. Because of the analytical
character of most of the transformations used, GRID3C is very fast. To gener-
ate and permanently store x,y,z coordinates of a typical four-ievel grid se-
quence consisting of (33*8%6),(63*13*11),(123*23*21),(243*43%41) grid points,
respectively, GRID3C requires between three and four minutes of CPU time on an
IBM 370/3033 computer. The Newton-Raphson iterative point-by-point mapping
procedure of the airfoil and wake contour from the w plane into the v plane
consumes most of the computer time. But this procedure needs to be performed
only once on each axisymmetric surface.

Input to GRID3C must be provided in the x,y,z coordinate system, while the
output grid coordinates can be computed in the x,y,z or x,r,e coordinate
system. GRID3C can automatically generate up to four successively refined
three-dimensional grids and store them on four separate tapes. Computational
grids for the blades with closed trailing edge (fig. 10) and for the blades
with open trailing edge (fig. 11) can be generated with GRID3C code. For re-
petitive runs with different numbers of blades or different blade setting an-
gles, only one input parameter needs to be changed in the input deck. Clus-
tering of grid points closer to the leading and trailing edges and closer to
the blade and vortex sheet surface (fig. 12) can be easily achieved by varying
coordinate stretching parameters A, B, and C. Grid nonorthogonality is almost
entirely removed from the airfoil and wake surface. Nevertheless, grid nonor-
thogonality can become intolerable if this grid generation technique is ap-
plied to closely spaced, highly staggered and cambered blades. Nonorthogo-
nality can become excessive in the leading edge region of any blade if the end
point of the semi-infinite slit in the w plane is not positioned approximately
midway between the leading edge and its center of curvature.

An unsatisfactory grid resolution inherent to the C-type grids can be ob-
served in figure 13. This figure shows a rectangular wing - cylindrical fuse-
lage combination and two computational grid surfaces: one corresponding to tne
surface of the fuselage and the other being an intermediate surface located
between the hub and the wing tip. Note that the wing extension beyond the tip
has linearly increasing cord Tength. The GRI3C code automatically calculates
wing (or blade) chord lengths at the off-tip locations based on the constraint

11



that gap-to-chord ratio at the tip should be retained at all outer spanwise
locations. Key elements of a three-dimensional C-type grid generated by the
GRID3C code for an advanced, eight-blade, transonic, NASA propeller is
presented in figures 14 and 15 with intersection contours between a blade and
the axisymmetric sur- faces shown. Note the large twist, sweep, and taper
variations and the fact that the propelier hub is axisymmetric.

With minor modifications GRID3C can be used for generating computational
grids applicable to a midmounted wing-body combination or a finned missile in
free air or inside a wind tunnel having axisymmetric walls.

12
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Figure 2. - Axisymmetric view of a three-dimensional, O-type, periodic bound-
ary conforming grid for NASA eight-blade transonic prop fan. Shown are the
hub surface grid and three neighboring blades with their surface grids.
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Figure 4. - Spanwise input planes (stations) perpendicuiar to the stacking (z)

Physical x,y,z coordinate system rotates with the blaae.

axis.
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Figure 5. - Radial coordinate nonorthogonal sheering concept.
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Figure 6. - Two-dimensional cascade of semi-infinite staggered siots of zero
thickness with an indication of a cascade of realistically shaped airfoils and
theoir wakes,
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Figure 7. - Intermediate ("circle") plane used in conformal mapping sequence.
Deformed circle corresponds to the realistic airfoil shape.
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Figure 8. - "Strip" plane obtained by conformally mapping "circle" piane.
Upper boundary corresponds to periodic boundaries, and lower boundary to air-
foil shape.
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Figure 11. - Two-dimensional (x,Re), C~type, periodic, boundary conforming
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d in the regions of leading and trailing edges as well as closer to

- Effect of controlled grid clustering. Grid points can be easily
the surface of the airfoil and its wake.

Figure 12.
concentrate
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Figure 13. - Elements of a three-dimensional, C-type, periodic grid generated
by GRID3C code for a geometry consisting of a rectangular unswept wing attach-
ed to a circular cylinder. Note deteriorating grid quality in the far up-

stream region. Only every fourth cylindrical surface is shown,
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-blade NASA prop fan.

- Blade surface grid and one of the axisymmetric surfaces generated
dvanced, eight

by GRID3C for an a

Figure 14,
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Figure 15. - Another view of the same prop fan grid generated by GRID3C shows
more clearly the axisymmetric shape of the propeller hub surface.
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