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Abstract: Most iterative methods for solving steady-state problems can be shown to be equivalent to solving
time-dependent problems of either parabolic or hyperbolic type. The relaxation factor used in accelerating an iterative
method to obtain the converged solution plays the same role as the time step size used in advancing the transient
solution to the steady state solution for a time-dependent problem. With this transformation. one can expose the
mechanism of the acceleration schemes. In the presented study. this time-dependent approach together with the
single-iteration, muiti-step algorithm are applied to generalize the nonlinear minimal residual (NLMR) method for
iterative solutions of linear and nonlinear problems. Most importantly, both theoretical studies and numerical
experiments confirm the monotone convergence behavior of the generalized NLMR method. With the multi-step
algorithm. it is found that both the rate and the smoothness of convergence of the NLMR method can be improved
even further. Several interesting problems that originated from this method are also discussed.

1. Introduction

The time-dependent technique proposed by Moretti and Abbett [1] in the mid-1960’s was the
first successful method to solve problems governed by equations of mixed type. The steady-state
solution was obtained by starting with the unsteady equation, and marching the solution along
the time coordinate until convergence was achieved. Nowadays. the time-dependent method is
widely used in computational fluid dynamics for the solution of the steady-state Euler and
Nawvier—Stokes equations [2.3.4].

It is interesting to note that most iterative methods for the solution of steady-state problems
can be shown to be equivalent to methods for solving time-dependent problems of either
parabolic or hyperbolic type [5,6]. The relaxation factor used in accelerating an iterative method
to obtain the converged solution plays the same role as the time step size in advancing the
transient solution to the steady-state solution for a time-dependent problem. This approach
offers several advantages.

For example, the mechanism of an acceleration scheme can be unveiled and an optimal value
of relaxation factor (optimal time step size) could be analytically determined. If accurate time
evolution is required for an unsteady problem, the time step size should be small to guarantee
both the stability and the accuracy of the solution. Consequently, very often a compromise must
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be made between the computer time requirements and the accuracy of the solution of such
computation provided the method is stable. Since the limitation on the time step size can be
analytically determined using the GNLMR method, a satisfactory compromise can be achieved.
If transient behavior is of no interest to us, it is convenient to interpret the physical time as the
artificial time or to reformulate the governing equations in terms of certain artificial time. Then
the GNLMR method can be applied to determine the optimal value of the time step size
(optimal relaxation factor) to minimize the time steps (number of iterations) for obtaining the
steady-state converged solution.

The NLMR method developed by Kennon [7], actually can be considered as a time-dependent
method with variable time step size. The NLMR method is based on the sequential minimization
of the global residual. A relaxation factor is introduced to minimize the L, norm of the residual
at each iteration. This iteration-dependent optimal relaxation factor drives the iterative solutions
to convergence. In order to obtain a smooth convergence history, several options are available to
this acceleration procedure. For instance. each three regular smoothing iterations are followed by
two accelerated 1terations [7]. Marchuk [6] has proved that under certain conditions. the
variational optimization process will produce the highest convergence rate for iterative method.
and the norm of the residual will form a monotone decreasing sequence with iteration. Marchuk
{6] also pointed out that the convergence speed of the minimum residual method can be even
further improved by using single-iteration, two-step minimum residual method.

The main objective of the present study is to extend Marchuk’s idea to generalize the NLMR
method using the time-dependent approach and the single-iteration. multi-step algorithm. The
applications of the GNLMR method are demonstrated by two numerical examples: one-dimen-
sional Burgers’ equation and the two-dimensional heat conduction equation. Several interesting
problems originating from this method such as integration by sampling. the concept of grid-de-
pendent relaxation factor, and the determination of the global minimum are also discussed.

2. Theoretical aspects
2.1. Optimization of the Euler scheme for linear problems

Let us first consider a well-posed linear initial value problem

d¢p/0r=Lo—F in 2, (1)
¢ =y on 3%2. (2)
¢ =g at 7=1,. (3)

Applying the Euler one-step, time-consistent. explicit scheme. the finite difference equation of
(1) can be written as:

¢l =g +Ar(i¢ 1) (4)
where / denotes the scheme-dependent difference analog of L. [ is the discrete analog of F. and
1t denotes the time level.

Most linear stability analyses of the scheme represented by equation (4) do not consider the

effects of boundary conditions, thus resulting in overly restrictive and even incorrect conclusions.
For example, Thompson, et al. [10], proved that the cell Reynolds number restriction for
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convection-diffusion problems derived from linear stability analysis is a commonly accepted
misconception. Moreover, the numerical experiments performed by Kennon and Dulikravich
[7.8,9], using the NLMR method showed that the usual Courant-Friedrichs-Lewy (CFL)
number limitation for both linear and nonlinear problems can be significantly exceeded. It
should be pointed out that, although Thompson et al. clarified the misconception of cell
Reynolds number limitation for linear convection-diffusion problems, their results did not give
the best value of time step size for accelerating the scheme. The NLMR method provided a
simple analytic way to determine the optimal acceleration factors for both linear and nonlinear
problems. However, the elementary time steps used for obtaining the corrections still follow the
CFL number Limitation concluded from the linear analysis.

Assuming that coding of a numerical scheme will not cause too much difficulty. stability.
convergence speed (computer time) and accuracy of the solution are three major factors to be
compromised in optimizing the numerical scheme. We now present an easy and analytic
formulation which allows us to make this compromise effectively.

Let the exact solution of /¢ — /=0 be denoted as ¢*. Define

¢ =o' — o*. (5)
ri=1I¢'—f {6)

as the error and residual vectors at time level 1. respectively. Hence, the time evolution of both
error and residual vectors satisfy the following equations:

=g, (7)

r't =t Ar(lr'), (8)

g7 =¢"+ Ar(1E). (9)
The residual and the error norms at time step 7 + 1 can be expressed as

= 02+ 2 A I+ (AT (10)

FE T = 1817 + 2 Ar(gh 18) + (M) g2, (11)
Define the rate of convergence I" and rate of damping A by

I'=—log(lr*ti/Itr ). (12)

A= —log( 1&g 1 /11¢"1]). (13)

The convergence and stability of scheme (4) requires that both I' and A are greater than zero.
However. the Lax equivalence theorem [11] states that for linear initial value problems. stability 1s
the sufficient and necessary condition for convergence. Thus. the limitation on A7 can be
obtained by solving the inequalities

Ar>0 and |ir'tHi<iir )t (14)
The solution of the above inequalities can easily be obtained as

O0<Ar< =2(r', Ir") /1 IF || 2. (15)

It should be noted that equation (15) addresses only stability and not the accuracy of the
solution. Nevertheless, if time-accurate solution is required (with a specified accuracy). equation
(15) provides the free choice of A7 to meet both stability and the desired accuracy condition. On
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the other hand, if time evolution is not important, A7 can be chosen as large as possible to
minimize the number of time steps for obtaining the steady state solution. The optimal value of
A7 can be determined by maximizing the convergence rate I" and the result is

(AT)ope= —(r', Ir") /|| Ir" || ? (16)
Thus, for steady state solution of equation (1), the optimized scheme
¢ =¢'+ (Ar)op (1" = 1) (17)

will produce the highest rate of convergence. The monotone convergence behavior of the
optimized scheme can be best illustrated pictorially by Figs. 9 and 10. As for the stopping
criteria, the L, norm or L, norm of the residual at new time level are commonly used in
determining if the steady state solution is obtained. However, by examining equations (8) and
(10), 1t is interesting to note that Ar will approach zero as the converged solution is achieved.
This provides us with a new criteria for stopping the iterative process.

2.2. Multi-step minimum residual method for linear problems

The method described in the previous section can be used to optimize the single-iteration,
one-step scheme. However, the speed of convergence of scheme (17) can be improved even
further by multi-step algorithm.

Assume that M steps are used to iterate at each time level. Using the Einstein summation
convention where repeated subscripts are summed, the multi-step algorithm for equation (1) is
then defined as follows:

¢ =¢ +w,d,. m=1~M (18)
where

81=l¢t"f,

8,=1""%8&), m>1 (19)

are the residual vectors at step m, and w,, are the relaxation factors to be determined by
minimizing the L, norm of the residual at time level (1 + 1). If the previous definitions of error
vector and residual vector are used, the following equations can easily be verified:

r'=1¢, (20)

rl=rtt 18, , (21)

Ftl=¢t"+ 0,8, (22)
The L, norm of the residual at time level 7 + 1 can be expressed as

Hr e =1+ 2w, (1, 18,,) + (18,,. 18, ) wpw,. m.n=1~M. (23)

In order to get the highest rate of convergence. clearlv. «, are the solutions of the following
system of linear equations:

9T /3w, =0 or (r'.18,)+(18,.18,)w,=0. (24)

Multiplying (24) by «, ., it follows that
(r', 18,) w,, + (16,,. 18,) w,w, = 0. (25)
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Subtracting (25) from (23) and using (24) results in
Nr* 2= nr 2 =(r18,) 0, = — (18, 18,)w,w,

- _fg(w,,,lesm)2 d2 <0 (26)

Thus, the residual norms for the multi-step minimum residual method also shows a monotone

convergence behavior which guarantees the stability of the iterative scheme and produces the
highest rate of its convergence.

2.3. Optimization of the Euler scheme for nonlinear problems

For clarity. we consider two-dimensional problems and equations in conservative form only.
The extension to the multi-dimensional problems and nonconservative equations is then
straightforward.

The conservative form of the governing equations for most engineering problems can be
written as

d¢/37=L,N’(¢, ¢,. ¢,) — F. (27)
where
L ,=3/3x, L,=03/3y (28)

and N” is the nonlinear differential operator in x, coordinates. Using the Euler one-step.
time-consistent, explicit scheme, the finite difference form of equation (27) can be written as:

o =g + AT [LN"(¢. ¢l ¢ ) — f] (29)
or

¢1+1 =¢t+ ATr! (30)
where

r= 1L N(¢L L, 8] - f (31)

is defined as the residual at time level 1.
Therefore, the residual at time level 7 + 1 can be expressed as

rl+] — 1,,}\7"((;')[-"1, ¢;+19 q,)l‘-v»l) _f (32)
After expanding the nonlinear operator N’ into Taylor series, it follows that
Firl = [,,{]Vr((i)l. ¢;§ 4)1\)
+ [(8N”/8¢’)r’ +{(ON"/06 ) (r'), + (‘8]\”'/a<p’).')(r’)‘.] At + O(A‘rz)\} -f.

In summary.
r’l=r"+a, (Ar)" (34)
where

ay = 1,[(aN"/8¢')r" + (ON" /8¢5 )(r')  + (AN /36 )(r').,] (35)
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and the coefficients of higher-order terms a,, a,, dg4,... can be determined by direct Taylor
series expansion. Equation (34) indicates that the residual at time level 7+ 1 is a polynomial
(hereinafter called residual polynomial [7] or RP) of the time step size. The total number of terms
in the residual polynomial (34) depends on the degree of nonlinearity of the operator N”.

If N” is a polynomial in its arguments then the Taylor series truncates and becomes exact.
Thus, the L, norm of the residual at time level 7 + 1 can be expressed as

=1 1+ 2(r a, ) (A7) + (a,,. a, ) (A7) (AT)". m.n>1 (36)

Equation (36) implies that the residual norm at time step r+1 is a positive polynomial
(hereinafter called minimizing polynomial [7] or MP) of the time step size (to be determined).
Thus, the stability of scheme (29) will be guaranteed provided that Ar is chosen as the optimizer
of the minimizing polynomial (36) such that ||r'*!|| is an infimum (global minimum). However,
the determination of the optimizer needs special numerical techniques [14]. The rate of conver-
gence depends on the relative difficulty in finding the optimizer. To reduce this difficulty. the
linearized operator of N* may be applied. If N” is truncated to the first order of At (linearized
operator), the approximate residual vector is

(r'"*YY=r"+a, Ar. (37)
Then, the approximate MP is

Wrt V2= e 12+ 2(ay. r') At + (a,. a /(A7) (38)
The optimizer of the above equation can be easily found. It should be noted that (36) and (38)
have the same, but negative slope at A7 = 0. Figures 3 and 4 give the best illustration for the
effects of the linearization on the convergence rate.

2.4. The generalized nonlinear minimum residual (GNLMR) method
The GNLMR method actually is the application of the methods described in the previous

sections. Let us consider the problems governed by (27) and assume that M steps are used at
each time level 1. The multi-step algorithm for nonlinear problems is defined as

¢ =¢'"+0w,8, +0(2). m=1~M (39)
where repeated indices are summed. The residual at step m is defined as

8, =1,N"(¢'. ¢l ¢L) — 1. (40)

8, =1L{(ON"/3¢)8,,_, + (3N"/36()(5,_,), + (aN" /0 J(8,-1).]- (41)

The coefficients of the higher order terms of «,, can be obtained by Tavlor's series expansion. If
only linear terms of «,, are retained. the residual polynomial (RP) at time step 7+ 1 can be
expressed by Tavlor's series expansion as

rr*‘.___lv‘;\;r{’é)t-ﬂ;\ (:);*1. ?I)*]}_f
= IV]V"'[¢’+wm6n1s (:): + wm((sm)\" (f;)i + wm(am‘),r} _f

—r'+1,{[(8N"/8¢)8,, + (3N" /8¢ )(8,,) . + (aN" /060 |(5,, )] wn+ O(e2)).

(42)
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Therefore, the minimizing polynomial (MP) at time step 7 + 1 can be determined as
L2 =02+ g(w,) (43)

where g(w,) is a polynomial in w,. For a highly nonlinear differential equation, g will be a
complicated multi-variable polynomial that depends on the number of steps we used and the
degree of the nonlinearity of the differential operator N”. Thus. a fast and accurate method to
determine the optimizer of MP is required for the GNLMR method to guarantee the highest rate
of convergence. If the linearized operator of N* is applied to reduce the difficulty of finding the
global minimum, the approximate optimizer of (43) can be determined by the method described
in section 2.2,

Since the coefficients in the MP are obtained by integrating the residuals over the whole
domain, the GNLMR method requires a large amount of computer storage to save the residuals
from each step m. This is also the common problem for all the conjugate-gradient-type methods
[12]. For the new generation of supercomputers, storage may not cause too much problems [12].
However, if storage restriction does exist. an integration by sampling could be considered.
Nevertheless, several problems accompany this idea [13]. Since a statistical sampling procedure
can be used to get the random data for integration, the question of error incurred by the
sampling should be addressed. If the error caused by sampling approximation can be de-
termined, it should be possible to design an optimal sampling procedure to minimize the error.

The problem of finding the global minimum (infimum) or the global maximum (supremum)
for a function of several variables is a basic problem in global optimization theory. In the
GNLMR method, the optimal relaxation factors are actually the optimizer of the MP. The
relative difficulty to find the optimizer depends on the degree of nonlinearity of the governing
differential equations and the number of steps we used for the multi-step algorithm. As pointed
out by Ratschek and Rokne [14]. interval method is the only one among all the existing methods
that always guarantee the location of the global extremum with arbitrary accuracy. Since the
interval method is basically iterative. it will require considerable computer time to get the
accurate result for a multi-variable polynomial of higher order. The highest rate of convergence
of GNLMR method will be guaranteed if the optimizer of MP can be efficiently determined.

Since boundary conditions can be applied exactly in the regions that are neighboring to the
boundary. it is obvious that during the process of relaxation. the iterative solutions in those
regions are more accurate than the regions that are far away from the boundary. This implies
that the relaxation factor should vary from one subregion to another. or even from point to
point. since the subregions or points where residuals are large, definitely need more correction.

3. Numerical examples

Two numerical test cases are used to demonstrate the applications of the GNLMR method:
one-dimensional Burgers’ equation and two-dimensional heat conduction equation. Both test
cases were computed using nonaccelerated method where time step size satisfies the CFL
limitation. In addition. three accelerated computations were performed with M =1. 2. 3 where
M 1s the number of steps used in the multi-step algorithm. It should be pointed out that. when
applying the GNLMR method. it is not necessary to specify the time step size to obtain the
residuals at each step. However. in order to compare the relative speed of convergence between
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the GNLMR method and the nonaccelerated method, a time step size that satisfies the CFL
limitation is used in calculating the residual at each step for both cases. Moreover, the effect of
linearization to the rate of convergence is investigated by solving both exact and approximate
MPs for M =1 in the case of Burgers’ equation. Comparisons are based on the accuracy of the
solution and the actual computer time required.

3.1. Burgers’ equation

According to the notations defined in the Section 2, the one-dimensional, viscous Burgers’
equation can be written as

d¢/d7=L,N(¢, ¢,)
where
N(¢, ¢,) = —1¢" +vo, (44)

and » is the viscosity coefficient. In this example, » = 0.07 is used. The initial and the boundary
conditions are chosen as follows

(1, 7) =0, ¢(0, 7)=1, ¢(x,0)=1-x. (45)
The FTCS scheme is applied to discretize (44) as
0= A= [(6) = ()] /4 Ax kw0l 200+ 4 ,) /Ax2) (46)

where i denotes the ith grid point in the total of 41.
The exact RP for M =1 can be expressed as

RP=r"*"=r"+a, Ar+a,(Ar)’ (47)
where

a,=3,/3x(—¢'r' +vr!). a,=—053,/3x(r'). (48)
The optimal value of A7 is chosen as the optimizer of the exact MP

MP = || r'* 1|2 = 4, + 4; At + A, (A1) + A4(A7)° + 4,(Ar)* (49)
where

AOZH"[”2~ A1=2(”.~ al) ‘42=(a17a1)+2(r1’ az)*
Ay =2(a;. a,), A,=(a,. a,). (50)

If linearized operator of N and M steps are used, the residual polvnomial is truncated up to its
first order as

I D S
RP=r""=r'"+a,0,

where

a,=(3/3x)[ -8, +v(8,).] (51)
and §, can be determined from (40)-(41). The minimizing polynomial MP is then

MP= | ri =i r' 2+ 2(r". a, ), + (a,.a,)e,w,.

Thus. the optimal relaxation factors w,, can be easily determined by solving the following system
of linear equations.

Amnwn = bm
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where

App=(a,. a,),  b,=~(r' a,), (52)
and A4, is a symmetric matrix of order M.
Figure 1 shows the exact steady state solution and the numerical solutions after 100 iterations.
It is obvious that the GNLMR method gives the most accurate results. The computer time costs
of 100 iterations for each case are shown in Fig. 2. It indicates that the GNLMR method needs
more computer time per iteration. This depends on the number of steps that were used in the
multi-step algorithm and whether a linearized or exact MP was solved. However. if a desired
accuracy is specified, the GNLMR method needs fewer iterations to achieve the accuracy
requirement as shown in Fig. 3. Therefore, the overall judgement of the efficiency of the
GNLMR method should be based on the computer time rather than number of iterations
required to obtain a solution with a specified accuracy. Figure 4 does prove the efficiency gained
by using the GNLMR method. The variations of the relaxation factors with respect to time (or
iteration) show that a sudden change in their magnitudes occurred just before converged solution
is reached as shown in Figs. 5, 6 and 7. It is interesting to note that all the relaxation factors
reduce to zero as converged solution is obtained. Since the relaxation factor is equivalent to the
time step size in our formulations, this phenomena can be interpreted as that the time marching
will stop once the steady state solution is obtained. This provides an alternative criteria for
stopping the iterative process in the GNLMR method.
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It must be mentioned that according to Figs. 3, and 4, both the rate of convergence and
smoothness of convergence of the NLMR method can be improved even further by the
multi-step algorithm. Moreover, Figs. 3 and 4 show a peculiarity that during the first few tens of
iterations solution converges very slowly and then suddenly accelerate to its maximum rate. The
converged solution is then reached almost immediately following the maximum rate interval.
This behavior is entirely different from linear problems as mentioned by Marchuk [6]. For a
positive definite matrix (a linear operator), the convergence rate during the initial iterations is
much higher than the asymptotic rate of convergence if the method of minimum residual is
applied. Hence, in practice it is not necessary to solve the exact MP for a nonlinear problem; the
linearized MP can be used and still guarantee a high rate of convergence as shown in Figs. 2, 3
and 4.

3.2. The heat conduction equation

The unsteady heat conduction equation is given by
3¢/d7= Lo, L=a(d’/3x?+3%/3y2) (53)

where «a is the thermal diffusivity.
A rectangular uniform grid having 21 X 21 grid points was used for this example. The initial and
boundary conditions are as follows:

¢(x, »,0) =100, (0, y, 7) =100 * cos(2my/H), ¢(W, y. 1) =100.
¢(x, 0. 1) =100, ¢(x, H. 7)=100. (54)
Applying FTCS scheme, (53) discretizes into
¢l =¢ + Arr'
where
=al(en, 20, el /AN (9L, - 24 e ) Ay (55)
Here i, j denote the grid point at 7 Ax. jAy). The residual polynomial is given by (21) as
rtl=ri4+a 18,
The minimizing polynomial is given by (23) as
MP= || r 2= e 12+ 2(r, 18, ), + (18, 18,) w0, .
The optimal relaxation factors w,, are the solution of the following linear system of equations.
Apnw, =b,
where
A, =(18,,18,). b,=—(r',18,). (56)

and A4,, is a symmetric matrix of order M.
The numerical results are summarized by Figs. 8 to 13. As indicated in Figure 8. the computer
time required per iteration for the GNLMR method is longer than for the nonaccelerated
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method. However, Fig. 9 shows that if the maximum number of iterations is limited to 80, the
accuracy that can be obtained by the GNLMR method is better than that of the non-accelerated
method. If a fixed computer time is specified, Fig. 10 clearly shows that the GNLMR method
will produce the best solution. Figures 11 to 13 show the variations of the optimal relaxation
factors versus number of iterations. Figures 9 and 10 confirm that using the multi-step algorithm
improves both the smoothness and the rate of convergence for the NLMR method. If the
GNLMR method is applied to a linear problem, it is interesting to note that the rate of
convergence during the initial few iterations is much higher than the asymptotic rate of
convergence as indicated by Figs. 9 and 10.

It should be pointed out that the linear version of the GNLMR method is similar to the
generalized minimum residual GMRES method developed by Saad and Schultz [15] to solve
nonsymmetric linear systems of equations. This method was recently modified by Wigton et. al.
[12] to solve nonlinear problems in gas dynamics using Newton’s iteration method. Since
Gram-Schmidt orthogonalization procedures are applied to orthogonalize the search directions
at each iteration in the GMRES method, this method demands a large number of arithmetic
operations and a large computer memory. Moreover, as pointed out by Marchuk [6]. the
implementation of the orthogonalization algorithm with respect to high-order matrices usually
results after a few tens of iterations in a numerical instability because of nonlinearity. This
implies that the maximum number of steps which can be used in one iteration for the multi-step
algorithm is practically limited to a moderate finite number.

4. Concluding remarks

The GNLMR method and its applications were presented. The accelerating mechanism and
the monotone convergence behavior of the GNLMR method has been proved by theoretical
studies and the numerical experiments. It was found that both the rate and the smoothness of
convergence of the NLMR method can be improved even further by the optimized multi-step
algorithm. Both numerical test cases confirmed that all the optimal relaxation factors vanish as
converged solution is achieved thus providing a new stopping criteria for the iterative process.
The numerical results also proved that linearization of a nonlinear operator in the GNLMR
method reduces the problems of determining the optimizer of the MP. This linearization still
guarantees a high rate of convergence. Hence. the GNLMR method can be simplified in
practical problems when iteratively solving nonlinear partial differential equations.
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