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ABSTRACT

An inverse design and optimization method is
developed to determine the proper size and location
of the circular shaped holes (coolant flow pas-
sages) in a composite turbine blade. The temper-
ature distributions specified on the outer blade
surface and on the surfaces of the inner holes can
be prescribed a priori. In addition, heat flux
distribution on the outer blade surface can be
prescribed and iteratively enforced using opti-
mization procedures. The prescribed heat flux
distribution on the outer surface is iteratively
approached by using the Sequential Unconstrained
Minimization Technique (SUMT) to adjust the sizes
and locations of the initially guessed circular
holes. During each optimization iteration, a
two-dimensional heat conduction equation is solved
using direct Boundary Element Method (BEM) with
linear temperature singularity distribution. For
manufacturing purposes the additional constraints
are enforced assuring the minimal prescribed blade
wall thickness and spacing between the walls of two
neighboring holes. The method is applicable to

both single material (homogeneous) and coated

(composite) turbine blades. Three different cases
were tested to prove the feasibility and the accu-

racy of the method.

INTRODUCTION

The idea of using optimization technique cou-
pled with the panel method (a kind of indirect BEM,
often used in fluid mechanics to solve Laplace's
equ;tion) to develop an inverse design method for
multi-holed internally cooled turbine blades was
originated by Kennon and Dulikravich [1,2,3,4].
They used panel method to solve Laplace's equation
for the temperature field in the solid blade mate-
rial subject to partly Cauchy type boundary condi-
tions. The computed temperature distribution on the
initially guessed inner coolant flow passage walls,
and the prescribed coolant temperature on these
walls were then iteratively approached by changing
the shapes and sizes of the coolant flow passages
until the procedure converged.

The present work represents an improvement

over this method which can be summarized as follows
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The temperature and heat flux distributions
on the Ty surface (Fig. 1) of the turbine blade are
specified a priori in the original method. This is
now changed to the temperature distribution and
heat flux distribution specified on I‘1 and the
temperature distribution specified on P3 surface,
thus changing boundary conditions for the Laplace's
equation from a partly Cauchy type to a Dirichlet
type during each iterative step.

The objective function is changed to the error
function defined by the differences between the
calculated and specified heat flux distributions
on the surface rl instead of differences in tem-
peratures on the surface F3.

The direct BEM is used presently instead of
the panel method to solve the two-dimensional
Laplace's equation for the steady state temperature
field. Also, the elements used now have linear
temperature distribution instead of the constant
temperature distribution.

Two constraints that might be required in the
practical blade manufacturing process are added.
They allow a minimum distance dg to be maintained
between any hole and the FZ surface and a minimum
distance d; to be maintained between the walls of
any two neighboring holes (Fig. 1).

The non-homogeneous blade design is allowed
whereby a surface layer of, for example, ceramic
material is used to coat the turbine surface r, (
Fig. 1). This results in two coupled Laplace's
equations that need to be solved simultaneously.

All the inner coolant flow passage shapes are
forced to be circular, since the circular shape is
more acceptable than the arbitrary shape from the

manufacturing point of view.

ANALYTIC FORMULATION

There are two methods of formulating the

boundary-value problems of potential theory. The

first method is refered to as an indirect formu-

H]

lation. It represents the potential function, u,
with a single-layer or a double-layer potential
generated by continuous source distribution over a
surface T. This procedure leads to the formulation
of integral equations which define the source den-
sities. This method is mainly used in fluid me-
chanics where it is known as the source panel
method.

However, one of the disadvantages of the in-
direct formulation is that the calculated source
strengths usually have no obvious physical relation
to the problem [5]. The other disadvantage is that
the boundary surface is restricted to be a Liapunov
(smooth) one. These disadvantages can be overcome
by using the direct formulation of the BEM {51,

The direct formulation can be deduced [5] from
Green's third identity or the weighted residual
method, since the latter permits a straightforward
extension to solve more complex partial differen-
tial equations and can combine the BEM with more
Therefore the latter

classical numerical methods.

method s wusually used to formulate integral

equations. The weighted residual statement can be

written as :

J(vzu)u* dn = J (q-a)u*dr - J (u-\_x)q* dar 8}

Q Ty Tg

*
where u is the fundamental solution of the

Laplace's equation on a domain Q, that is,

2 %
Viu o+ Ay 0 (2)

where Ai is the Dirac's delta function. For an

isotropic two-dimensional medium,

* 1 1
u 2n n

(3):

"t

where r is the distance from point i to the point
under consideration.

Then

-_3_“_ * Ju 4
1" 3n 1 an (4
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? Usually, u =4 on Tg are called the essential
conditions‘and %% =gq on Ty are called the natural
conditions.

Integrating by parts and substituting Eq. (2)

; into the left-hand side of Eq. (1), the final form

of the boundary integral equation is

Yumnis oo

1 (5)

* *
c“i+J“q dr=Jqu dar
; r r
' This equation provides a functional constraint
between u and q over T, which ensures their com-
patibility as boundary data. Here, ¢y is the value
of the scaled internal angle of the boundary T at

the point i (Fig. 2a), that is,

(8)

Consequently, ey = 1/2 for a point on a smooth
boundary where there is a continuous tangent, ey = 1
for a point in the interior @, and ey = 0 for a

point exterior to Q.

NUMERICAL DISCRETIZATION

Equation (5) can be discretized into a series
of straight elements on the surface T with the
variation of u and q assumed to be 1inear along each
- element. The points where the unknown derivatives
g of the potential are considered are called nodes
and are taken to be at the ends of each element

(Fig. 2a).

S

Equation (5) can be written for the n elements

Cquy * [Hil’ - Hoy

(9

9
q(g) = [¢1¢2]
LY

where £ is the dimensionless coordinate (Fig.

2b), & = 2x/1
1 1
and ¢, =5 (1-6) ¢, = 3 (1+8)
Then
* 1 2 b
dl = [h , hY. .
j uq [ 19 1] [ J (10)
r Uy
]
where
1 * 2 *
= = r
hij J ¢1q dr hij j ¢2q d
r r
] ]
Hence
* 1 2 91
dlr =
l qu 1y &yl L J (1)
3 2
where
1 * 2 * oo
gij =J ¢1u ar gij J ¢2u d
T r
] i
A1l coefficients hlij’ hzij, glij. and gzij
can be evaluated by wusing the numerical inte-

gration. When i=j, g1 and gzij are determined

ij
analytically [5].
Substituting these into Eq.(7), the equation

for node i can be obtained as

[6y15 ©ypniee iy

|
i
|
I
{
i

L uy L qy
as
(12)
. a . n .
= r
1% * jgl J va dr jZI J " M where for all j = 1
T
rj . - 2 1 2 . 1 13
13 T Pg-1 TPy 0 Cpy T Bgyar Y By (13)
The values of u and g at any point of the el-
ement can be defined in terms of their nodal values and for § =1
and the linear interpolation functions ¢, and ¢,, i -l 2 1
1 2 Mg "B, v By o Cyymey g tBy (14)
that 1s,
’ uy Then
|u(@) = [4)9,] (8) PZJ ~ N
: i up Uy * L Hyug= ]G q (15)
: i =L
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JZI 133 jzl 1,1 (16)
where
H = 1; for 1i#j
i, i,j
b (17)
Hi,j = Hi,j + ey for 1i=j

COMPOSITE BLADES

Turbine blades with, say, ceramic coating have

two regions of considerably different thermal

conductivities. Therefore, two coupled Laplace's

equations for temperature field need to be solved.
The corresponding two matrices can be added to-
gether by using the continuity of heat fluxes and
equalizing the temperatures themselves at the
interface FZ between the coating and the main tur-
bine material.

Assume that there are Ni elements on the sur-

faces T. i=1,2,3

i
conductivity in QA is k1 and in QB is k2'

where and that the thermal
For do-

main Q (coating material) the governing equations

Q ) o, o | '
[ A AJ u A A Q /kl
M, H - [c , G ]
1 2 r, 1 2 r, (19)
u Q /l(1
In the same way, for domain QB (main blade mate-
rial)
2 T
[ O u g -Q Ik,
H , H } = [c . } (20)
1 2 I'3 1 2 I‘3
u Q /k

Combining Eq.(19) and Eq.(20) and moving all

the unknowns to the right-hand side results in

Q
9, r s s s r
ke, H, 0 u _c:1 G, -k, o Qz
1] r.|—
B
3 2y 2y Q[ T,
0 kH, |lu
0 -6,  -kH G, ||u
— ]"3
0
(21)

Notice the directions of the normal defined
on different surfaces as shown in Fig. 1. So, for
surfaces rl and r2, the numbering scheme is defined
in the counterclockwise direction, while for r3 it

is in the clockwise direction.

PROBLEM OF THE NON-UNIQUENESS

For a multiply-connected domain, the solution
of the integral equation with Dirichlet or mixed
type boundary conditions does not always have a‘
solution [6]. That is, for a given
curve-shape Fl there will always exist a particular
where difficulties will occur in
connection with the integral equations of the first
kind with logarithmic kernel.

In the present work, this situation is avoided
by a simple change of scale - a method adopted by

so that the maximum diameter of the do-

are then : ‘r“
- ‘ N\ u 1
H H H H 1
1,1 1,N1 | ‘I,N1+1, 1,N1+N2 .
| r,
) ) ) Up | e
. i ) . M=
H r
HN1+N2, N +N ,N tHN +N N +1 N,‘+N2,N1+N2 u12
\
k/—v\J N AV — u 2
Q N
% mA 2
INI‘| 2 — -
r
l 1 !
. | 3 Q1 /k‘l ;
G G G G . ;
I "1 LN TN T.N +N, . | unique
| I I |
| . )
f . . ' QN1/k1 i
. . | . * r ! curve-magnitude,
' . . . Q12/k1 ;
G G G G N, +N !
NN T TN AN NN N N+t N, N o :
QA QA QNz/li
G1 Gl —
i (18) Symm [6],
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main is not greater than unity. This is sufficient
to ensure that there 1is no possibility of
non-uniqueness due to Fl being a T-contour. Al-
ternatively, a unique solution may also be obtained
by adding an appropriate auxiliary condition [7].
Detailed discussions on the non-uniqueness of the
solutions of the integral equations can be found

in [8] and [9].

THE OPTIMIZATION PROCEDURES AND CONCEPT

The iterative optimization procedure used to
modify the sizes and locations of the quessed
coolant flow passages can be explained using the
following steps :

(1) Specify the potential (temperature) distrib-

utions u on surfaces Ty and T,.
(2) Specify the heat flux distribution QRj (for

j=1,...,N1) ‘on  surface Ty, and the thermal
conductivities kl and k2'

(3) Specify the manufacturing constraints (i)
minimum distance d0 allowed between the holes and
surface r,. (i1) minimum distance d; allowed be-
tween any two neighboring hole surfaces Is.

(4) Specify the number of holes required, and the
initial guess of the radii and location of the
centers of the holes. Also, required is specifica-
tion of the number of boundary elements to be used
on surfaces Fl, FZ’ and each of the holes, F3.

The geometry for each circular hole can be
defined by three independent variables : center's
coordinates x and y, and the radius r. So if there
are M holes, there will be 3M independent variables
in the error function.

However, the initially guessed variables
should locate the holes entirely in the feasible
region of domain 2, that is, the constraints in
step (3) must be satisfied (Fig. 1).

(5) With the BEM described earlier, solve

Laplace's equation for temperature field and cal-
culate the heat flux ch (j=1,...N1) on surface
Ty

(6) Use the ch to determine the values of the

error function and the objective function (0BJ) of
the optimization problem.

The non-dimensional error function EO can be

defined as
Nl
G -QR)Z]L’
Lal 1Y
Eo()_t) = Eo(xi’yi;ti) = Nl (22)
1
! (QR)Z]f
PG

The purpose is to find optimal value of
f(xi’yi;ri) for i=1,...M such that E0 is minimized.
A penalty function must be added to Eo to construct
the OBJ function E*(x) for the two manufacturing
constraints, that is:
E*(f) = E,(x) + penalty function (23)
There are many different forms for the penalty
function [10]. The penalty function used here is
of the interior method type with the inverse bar-

rier function proposed by Carroll [11].

N N

3 do 4 di
Penalty function = g. v + ¥ (24)
j=1 @47d) Ly (Dk_di)J
'
N3.

where N Here, Dj is the min-

“ T WWDT
imum computed distance between the element j of Ty
and the surface FZ and Dk is the computed distan&e
between any two circular holes.

Dy = [(xi‘x1+1)2 * ("1"'1+1)2]!5 TR

for holes i and i+1.

R is a positive constant which is chosen to
be initially quite large during the first few op-
timization iterations, and then gradually reduced
to near zero E*(f) will then approach EO‘ This
method is called the Squential Unconstrained
Minization Techanique (SUMT).

A relation between the initial penalty func-

|
i
|
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tion and the error function is defined as Penalty
Adjustment Coefficient (P.A.Coeff), that is,

P.A. Coeff = Penaltv function

E
o

(7) Use the steepest-descent optimization tech-
nique to find the new values of the indepent vari-
ables x until the corresponding g*(x) is below a

satisfactory value, otherwise return to step (5).

RESULTS AND DISCUSSIONS

On the basis of preceeding analysis a computer
program [12] was developed and tested using the
following three test cases.

The first test case was used to test the re-
liability of the computer program as an analysis
tool. The geometry consists of a coating and a
single hole (Fig. 3) with
s k1=1, k2=5, T1=100, T3=20 (uniform distributed).

r3:r2 r, = 0.5:0.8:1.2

A total of 7é boundary elements were used. The re-
sults are listed in Table. 1, showing that the
largest error between the analytic solution and the
BEM solution is about 1.63% in Ql' The accuracy of
the BEM can be further improved by either increas-
ing the number of elements or using higher order
elements. The inverse optimization solutions were
accomplished (Table 1) by specifying the heat flux
distribution on 'y and temperature distribution on
Fl and T3 surfaces. The heat flux on 'y surface was
then calculated by the BEM after each iteration,
that is, after each adjustment of the hole shapes
and their locations. The initially guessed surface
F3 and its iterative evolution sequence are shown
in Fig. 4.

The second test case was used to test the
feasiblity of the inverse design concept. The same
heat flux distribution on the surface Fl was kept
as in the first case, but the number of the circular

holes was changed to three instead of one (Fig.

5a). Temperature distributions on Fl and the holes

E

F3 did not change, that is, it was still T1=100 on
rl and T3=20 on F3. Comparsion of the calculated
heat flux distribution with the specified heat flux
is shown in Fig. 6. The corresponding L2-norm error
was below 2% and it is distributed in the form of
a sine function (see Fig. 6). It can be concluded
that the inverse design concept is quite feasible
for multihole configurations. Note that when the
error was decreased to 0.829% (Fig. 5b), one of the

three holes converged to a large hole located near
the center. The other two holes became negligibly

small in comparison with the large hole (Fig. 5b).

The third test case was used to prove that for
an arbitrarily shaped blade, a good accuracy can
be obtained between the BEM approximate solutions
and the inverse optimization solutions.

The contour [ used in this case was a real-
istic turbine blade (Fig. 8). The variable temper-
ature distribution specified on the surface Fl can
be seen in Fig. 7 and does not represent any actu-
ally measured value. The results of the inverse

design procedure are listed in Table. 2 and the
evolution history of the holes can be seen in Fig.
8.

No obvious irregularity can be seen from the
except when the

convergence history of EO

P.A.Coeff. is chosen to be toc big. Then, there
will be an upshoot during the first iteration (see
Fig. 9 and Fig. 10).
P.A.Coeff. equal to 8 and in Fig. 10 for the

P.A.Coeff.

Note that in Fig. 9 for the

equal to 0.5, the iterative process
converged to local minimas.

Also, in the third test case using P.A.Coeff.
of 10, resulted in an infeasible solution, that is,
the radius of one of the circular holes became
negative. Conclusion is that too big a P.A.Coeff.
will create a 1argeE*(x)value. so the hole radius
derived from the quadr;iic interploation will fall
below a physically meaningful value. Conclusion

is that P.A.Coeff. should be of the order one.
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The rate of convergence of any optimum search
technique is highly dependent on the given function
g In certain problems a proper scaling can be
performed so as to make the contours of constant
error be as circular as possible. This can signif-
icantly accelerate the rate of convergence. Unfor-
tunately, the E*(x)in this inverse design problem
is an implicit fu;ction of x and the scaling tech-
nique is hard to apply.

The problem of failing to find the global
minimum might be resolved in any optimization
technique by recomputing the problem with different
initial guesses [13]. The initial variables should
be systematically chosen for good distribution over

the variable space until a sufficiently low value

of E0 has been located.

SUMMARY

An effiéient inve}se design procedure for
multiple circular holes(coolant flow passages) in
non-homogeneous turbine blades has been developed.
The work is accomplished by coupling the direct
boundary element method and the sequential uncon-
strained minimization technique.

The specified heat flux distribution on the
outer surface of the blade is iteratively ap-
proached while satisfying the prescribed temper-
ature distributions on the outer surface of the
blade and on surfaces of the holes by a successive
adjument of the sizes and locations of the holes.
Also included are two manufacturing constraints
concerning the minimal allowable blade wall thick-
ness and hole spacing.

This procedure can successfully be applied to
the inverse design of coated turbine blade multiple

coolant flow passage shapes. In earlier works

(1,2,3,4] was demonstrated that the coolant flow
passage shapes can be changed from circular to

other families of non-circular holes by adjusting

the relation between the independent variables in
the optimization objective function. It can also
be revised to be used for the inverse design and
analysis of the transient thermal problems or cou-
pled with forced convection boundary conditions on
the coolant flow passage walls if the coolant tem-
perature and heat transfer coefficients are pro-

vided.
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Surface
n Ty ry
hole hole
Center Radlus
Properties
Method Q q, T, Qy
x y r
Analytic Solution 133.47 -200.21 35.06 -320.34 0.00* 0.00* 0.5*%
BEM Approximate Solution 135.65 -200.43 35.21 -324.1 0.00* 0.00* 0.5%
P.A. Coeff
0.1 135.65% -200.52 35.24 -324.74 0.00032 0.0006 0.4998
Iaverse Optimization
Solutien
1.0 135.65% ~200.44 35.21 -324.64 0.0001 0.0000 | 0.5001
5.0 135.65% -200.34 35.25 -324.90 0.0005 0.0003 | 0.4994
Table. 1  Results for the first test case : using Hnear BEM
* - values are given as the specified conditions
Hole 1 Hole 2 1.2
Total Heat Flux Norm Error
on Surface x 100X
Center Radius Center Radlus
N L Ty X 4 T 2 4] T2
Approximate Sclution 70554 -70636 -71501 0.3% 1.25% 0.08* 0.5% 1.0% 0.05¢%
P.A. Coeff
0.1 70570 -70653 -71648 0.2978 1.2511 0.0783 0.5031 1.008 0.053 0.927
0.5 70214 -70298 ~71339 0.2953 1.2530 0.0774 0.4997 1.021 0.055 2.346
Inverse
Optimization 1.0 7.0564 | -70647 -71648 0.2976 | 1.2512 0.0782 0.5031 1.009 0.054 0.99
Solution
1.5 70556 -70639 -71635 0.2977 | 1.2512 0.0783 0.5031 1.008 0.054 0.95
5.0 70564 -70647 -71646 0.2977 1.2512 0.0782 0.5031 1.008 0.054 0.972
8.0 70585 ~70669 ~71664 0.2977 | 1.2512 0.0783 0.5031 1.008 0.053 0.921
Table, 2 Results for the third test case using linear element

* - vllues are g'ven as thc specified conditions
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base material with thermal conductivity k2
Coated material with thermal conductivity kl

Fig. 1 Geometry and manufacturing constraints
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[

PRI e N

£=2x/1

Fig. 2b

Linear element

Fig. 3  Geometry and boundary conditions, test case 1
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140.
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130.0

Fig. 6

NORM ERROR= 0.829 Z%

| ] ]

THERMAL CONDUCTIVITY : 1.0000 5.0000

CONSTRAINTS: REQUIRED CALCULATED

BOUNDARY-HOLE 0. 050 0.150 .

HOLE~HOLE 0.010 0.010

PENALTY ADJUSTMENT COZFFICIENT  0.100

SOLID LINE— THE CONVERGED SOLUTIONS

I DASHED LINE— THE INTERMEDIATE SOLUTIONS 7
| | 1

-1.0 0.0 1.0
Fig. 5b Iteration sequence, test case 2

) ] ] 1
ASPECIFIED FLUX DISTRIBUTION

+CALCULATED FLUX DISTRIBUTION

3

| l ! 1
100.0 200.0 300.0 400.0 500

ANGLE |

Calaulated and specified heat flux distributions,

test case 2

12 ITERATIONS, NORM ERROR= 0.007 %
] l I
1.0+ -
~
0.0+~ = -
/

-1.0~ ~
THERMAL CONDUCTIVITY : 1.0000 5. 0000
CONSTRAINTS: REQUIRED CALCULATED
BOUNDARY-HOLE 0.010 0.283
HOLE-HOLE 0. 000 0. 000

—92. O —PENALTY ADJUSTMENT COEFFICIENT 1,000 -

SOLID LINE— THE CONVERGED SOLUTION
DASHED LINE—- THE INTERMZDIATE SOLUTIONS
| 1 i
~-1.0 0.0 1.0
Fig. 4 Iteration sequence, test case 1
NORM ERROR= 1.868 Z
i I 1
THERMAL CONDUSTIVITY : 1.0000 5. 0000
| CONSTRAINTS: REQUIRED CALCULATED -
BOUNDARY-HOLE 0. 050 0.191
HOLE-HOLE 0.010 0.011
PENALTY ADJUSTMENT COEFFICIENT 0. 100
| 1
-3.0 1
-1.0 0.0 1.0
Fig. 5a Iteration sequence, test case 2 ‘
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CONTOUR LENGTH, FROM TRAILING EDGE

7 Temperature distribution prescribed on T

1 test case 3

" 45 ITERATIONS, NORM ERROR= 0.950 %

l
o©P. A COEFF 0.1

AP-A.COEFF 0.5
+P. A COEFF 1.0
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, THERMAL CONDUCTIVITY : 1.0000 10. 0000 | :
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Iteration sequence, test case 3
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