JainiBG

L

AIAA-86-0554

POLYNOMIAL ELIMINATION THEORY AND
NON-LINEAR STABILITY ANALYSIS FOR THE
EULER EQUATIONS

S. R: Kennon, University of Texas at Austin,

D. C. Jespersen, NASA Ames Research Center, and
G. S. Dulikravich, University of Texas at Austin.

RIAA 24ih Aerospace Sciences Meeting
January 6-9, 1986/Reno, Nevada

For permission to copy or republish, contact the Americar Institute of Aeronautics and Astronautics
1633 Broadway, n.w York, NY 10019

+)

POLYNOMIAL ELIMINATION THEORY AND NON-LINEAR
STABILITY ANALYSIS FOR THE EULER EQUATIONS

S.R. Kennon

Graduate Research Asst.

Texas Institute for Computational
Mechanics (TICOM)

University of Texas at Austin

D. C. Jespersen

Moffett Field, CA

ABSTRACT

Numerical methods are presented that exploit the
polynomial preperties of discretizations of the Euler
equations. It is noted that most finite difference or
finite volume discretizations of the steady-state Euler
equations produce a polynomial system of equations to
be solved. These equations are solved using classical
polynomial elimination theory, with some innovative
modifications. This paper also presents some
preliminary results of a new pon-lipear stability
analysis technique. This technique is applicable to
determining the stability of polynomial iterative
schemes. Results are presented for applying the
climination technique to a one-dimensional test case.
For this test case, the exact solution js computed in
three iterations. The non-linear stability analysis is
applied to determine the optimal time step for solving
Burgers' equation using the MacCormack scheme. The
estimated optimal time step is very close to the time
step thal arises from a linear stability anaysis.

INTRODUCTION

In ref. 1 a polynomial-based technique was used
lo accelerate the convergence of a finite-volume Eujer
solver. In this paper, we extend these results by
describing additional techniques for exploiting the
polynomial properties of the Euler equations. In
particular, we use classical polynomial elimination
theory to solve the discretized Euler equations and
introduce a new non-linear stability analysis technique.

Polynomial elimination theory was developed
along with modern abstract algebra in the late
nineteenth centuryz. This elimination theory gives
constructive methods for determining whether or not a
system of polynomial equations (a system of equations
copsisting of sums of terms that are products of the
variables raised to non-pegative integer powers) has a
solution. As a by-product of applying the theory to
determine the existence of a solution, one gets the
solution itself (if it exists).

In this paper, we present a practical method for
applying the elimination theory o solve large systems
of polynomial equations. In particular, we show that the
algebraic equations resulting from standard
discretizations of the equations of gasdynamics (Euler
equations) and their associated boundary conditions
form a sysiem of polynomial equations. With suitable
assumptions, it can also be shown that discretizations
of the Navier-Stokes equations form polynomial
eve omg ~f « juations. Thus the elimination method has

Releacad tn ATA A ta nuhlich in ol forms.

Research Scientist
Computational Fluid Dynamics Branch
NASA Ames Research Center

G. S. Dulikravich

Asst. Professor

Texas Institute for Computational
Mechanics (TICOM) ’
University of Texas at Austin

potential applicability to’ solving both inviscid and
viscous steady compressible flows. It must be poted
that if one is rying o solve a system of algebraic
equations that is only partially polynomial, the
Dop-polynomial terms could be approximated by
polypomials using trupcated Taylor series. Thus this
solution method may be applied to many equations in
the engineering sciences.

The basic idea of polynomial elimination theory
is to sequentially eliminate dependent variables from
the system, in close analogy with Gaussian
elimination. This elimination procedure gives a
modified system of equations that, if no approximations
have been made, has exactly the same roots as the
original system. Moreover, the modified system can be
solved in the same manner as the ‘back solve' is done
in Gaussian elimination for linear systems. That is, the
modified system is in a form such that the system can
be solved by solving a sequence of one variable
equations.

In general, the procedure becomes impractical for
large systems; thus, we introduce some inmovative
modifications to the basic lechnique to make the
method practical. The main modification is the use of
approximation formulas to both reduce the amount of
work needed to solve the polynomial system and
increase the accuracy of the results. The use of the
approximation formulas makes the results of the
elimination process inaccurate. Therefore, the system
of polynomial equations is recast into a form that
involves corrections to the variables. The corrections
lo the variables then become the primary unknowns.
This defines a global iterative procedure in which an
initial guess for the solution is given and then each
iteration consists of solving for the corrections using
polynomial elimination and adding the corrections 1o
the present iterate.

This paper also presenls a non-linear stability
analysis technique that can be applied to determine the
stability of polynomial iteration schemes. The
technique gives a bound on the error of the solution at
the new iteration level. This bound depends on the
error at the old iteration Jevel and the norm of a
polynomial function. The error at the pew iteration

"level can be minimized by minimizing the porm of this

function with respect to a free parameter such as the
time step. In addition, for a given time step, the
stability of the iteration scheme can be checked by
tomputing this norm.

The following two sections of this paper present
the mechanics of the elimination procedure and the
3

details of the non-linear stability analysis. These
sections are followed by some results of applying these
lechniques 1o two test cases.

THE ELIMINATION ALGORITHM

This section presents: a) the theory of resultants, b)
the application of this theory to the solution of a
system of polynomial equations, and c¢) the
approximation scheme used 16 make the solution
procedure practical.

Resultants Assume that we are given two
polynomials pl(xl,xz,...xn) and pz(xl,xz,...xn) in the

n variables X1,X92,...Xn. Assume that we wish to
climinate variable Xxj from these equations and obtain g
new polynomial that is both independent of x1 and has

the same roots as the original two polynomials. The
so-called resultant polynomial of P and py with

respect 10 xy has this property (cf. van der Wacrdenz).

To form the resultant of two polynomials with respect
to a given variable, say X3, we first rewrite the two

polynomials p; and P2 as polynomials in X1 whose
cocfficients depend on the other variables:

P1(x1, X2y Xg) = 3 (x9, X3,..., Xg) xli
fori=0,1,.,4d; .

pa(x1, X2, Xp) = b; (x5, X350 Xp) xli
fori=0,1,.., dy

where we use the Einstein summation convention, and
d; end dy are the highest powers of X} in pj and py

respectively. Next, we form the (dg+dy) by (dy+dj)
Sylvester matrix:

231 2q1-3 ... 3y ag

f 2d1 2411 --- 20

| [dz rows of a'sj ...
! %d1 4d1-1 .- 2 2
l bd?. bd2‘1 oo bl bo]
l Py Dgpoy --. by by !
| [dl rews of b's} ... |
{ bdz bd2_1 PO bl bo |

where all blank spaces are filled with zeros. The
resultant of p; and p2 with respect to X1 is just the

determinant of the Sylvester matrix and is therefore a
polynomial in X2,X3,...X5. Moreover, the resultant has

the same roots as the original system, in terms of the
variables X2,X3,...Xy (see ref. 2 for more details and a

proof of these claims).

Solving a3 System of Polvnomial Fguztions
Using the elimination properties of the resultant, we
can construct a procedure for solving a system of
polynomial equations that closely parallels Gaussian
climination for linear systems. In fact, if the
polynomial system is indeed linear, then this procedure

reduces to Gaussian elimination. The idea is to
sequentially eliminate the variables from the equations
using the properties of the resultant, and then perform a
back solve that solves for all the variables. The
procedure in algorithmic form is as follows:

(forward elimination)
Fori =1 thrun do

[Choose each variable X1,X2...X5 in turn to be
eliminated }

begin;
1. Find all equations that contain X{

2. Choose one of these equations (say the first)
as the ‘eliminator’

3. Form the resultant of the eliminator equation
with all the others that contain X;

4. Set each original equation to be this resultant
(now each equation except the eliminator does
not depend on x;)

end;

(the original system is now in a form amenable
to back substitution)

fori=1 thru n do
begin;

5. Find all equations that coptain only one
upknown variable and solve for all the roots of
these equations

6. Make an intelligent guess as to which root o
choose as the actual solution (c.g. check all real
roots using some criteria),

7. If all variables X1,X3...xp have been solved
for then stop.

end;

This algorithm will produce the exact solution (using
exact arithmetic) in a finite number of steps. However,
each time a variable is eliminated, the order of the
modified equation (i.e. the resultant) increases. Consider
the system

3 x2+3x22 -4=0
X (2x3-%2)~1=0)

in xj and x5. If we want to eliminate X] from the
Sysiem, we must evaluaie the determinant of a 2 x 2
Sylvester matrix (since the system is linear in x1). The

result is a fourth order polynomial in X2
(3x22 -4)(2%3-%32) + %y =0 ()

If we are to use this equation later on in the solution
procedure to eliminate X2 we would have to evaluate the

determinant of a much larger matrix. Ia fact, the amount
of work needed to successively eliminate each variable
increases faster than exponentially. Therefore, for
polynomial elimination theory to be practical, certain
approximations have to be included.

Approximations to the Basic Method Two
modifications were made to the basic elimination
procedure to make it applicable for solution of large
polynomial systems. The first modification is the
introduction of an iterative procedure for solving the
polypomial system. This iterative procedure is based on
solving for a correction to an iterative guess at the
exact solution instead of solving for the variables
themselves. Therefore, we make the substitution

Xj e x;+8x; fori=1,2,.,n (3)

and now treat 8xj,8x5,...8x, as the unknowns in the

elimination process. Clearly, the original system now
becomes a polynomial system of the same degree in the
new unknowns, namely the 8xi. Once the corrections

are solved for, the iterates are updated according to
xk+lo x4 8xX for i=1,2,..n @)

where k is the global iterative counter. The procedure is
halted when some norm of the corrections 8xi is deemed

lo be within 2 specified small tolerance. The motivation
for using this correction scheme is threefold. First of
all, we will introduce some approximations, as
discussed below, that will not make the solution exact.
Sccondly, correction schemes are, in general, better
conditioned than direct schemes. A final justification
for the use of a correction scheme is that one usually
knows with & great degree of certainty the order of
magnitude of the corrections, especially if the
governing systern has been non-dimensiopalized. This
knowledge will be applied in the following discussion
oo the approximation scheme. ’

As poted above, the amount of work needed to
sclve a general polynomial system usipg elimination
theory grows faster than exponentially, or for that
matter faster than factorially, as each variable. is
eliminated. Thus, we were led to the following
modification of the eliminalion proceure. After siep 4
of the above algorithm, we add step 4.1:

4.1 If the degree of the resultant is too high,
approximate it with a lower order polynomial.

The approximation that we use in step 4.1 is to find the
polynomial p*(x) of given degree d* that is closest to
the resultant polynomial p(x) of degree d in the
‘lq-norm sense:

min [[p(x) - p*x))2 dx (5)
where p(x) and p*(x) are given by

Px)=a;xl fori=012.4d
P*(X) =b;xl fori«0,1,2., 4d*

The solution to this linear least squares problem can be
casily found, especially with the use of a symbolic
manipulator such as MacsymaS, _In the results to be
presented below, we use a quadratic approximant. The
quadratic approximation is quite accurate, especially
when combined with the correction scheme. The limits
of the integration in eq. 5 are chosen to encompass the
entire expected range of possible values for the
corrections 8x;. For example, if the original system of

polypomial equations has been normalized (i.e.
non-dimensionalized) such that the dependent variables
are of O(1), then it would be reasopable to choose the
integration limits as — 1o +c where ¢ is some pumber
less than 1. Figures la-c show typical resuits of
approximating the polynomials encountered in solving
the one-dimensiopal Euler equations (see the results
section below). These plots clearly show how accurate
the approximation scheme is.

NON-LINEAR STABILITY ANALYSIS METHOD

Assume that we are trying to solve a system of
equations

f(x)=y (6)
where

f: SKN—> SYN; Xy € 9(N
%N s N-dimensional real Euclidean space, and yis a
given constant vector. Further assume that the system

is to be solved using an iterative procedure defined by
the iteration function g: xN_, ®N

xn+1 = g(xn) (7)
where g is a polynomial function of x. Many iteration
schemes applied to the Euler equations give iteration
functions g which are polynomial. Let x* be the exact
solution of (6) such that

f(x*) =y (8)
and

x* = g(x*) ' ®

that is,’ x* is a fixed point of g. Now define the error
at ileration level o by -

el = x* . x0 (10}

= eD+l _ ge . xb+l a1

Solving (10) and (11) for x* and substituting into (9)
gives

x0+1 4 en+l g(x0 4+ el) (12)

Since g(x) is polypomial we have from a Taylor series
expapsion

g(a+b) = g(a) + q(a,b) (13)

for any a,b € N, The function g(a,b) is polynomial in

both a and b, of degree M in b and degree M-1in a
(here M is the total degree of g). This function can be
thought of as just the cross-product terms arising from
the expansion of the LHS of (13). Using the identity
(13) we find from (12) that

xn+1 + en+1 = g(xn) + q(xn’ cn) (14)

but from (7) we have that xB+1 - 8(xD). Thus we get
the basic result of the analysis ’

eB+l . g(xB, 0 (15)

This result gives an explicit formula for the error at the
iteration level n+] as a function of the solution and the
error at iteration level n. Now we define a norm for the
operator q:

aq@ab) |l 7 W(iby)
be ®N (16)

lggll= max

where

Wb) = b+ b2+ + oM

and {}-| is the standard Euclidean (Ly) oorm. The

subscript a on q in (16) is a reminder that the norm is
dependent on the fixed vector a. The philosophy
behind this definition for the norm of q is that we want
o emulate as closely as possible the norm of a linear
operator. The norm of a linear operator has the effect of
"picking-off" the coefficients of the lipear function,
pamely the elements of the matrix of the linear
function. Thus we wish to define a norm for a
polynomial function that also “picks-off" the
coefficicnts of each term comprising the polypomial
function. One can see that the function defining the
porm is clearly bounded since the numerator is divided
by a function that always has the same order of
magoitude as the numerator. Using this dcfinition of
the porm, we see that for any particular value of b €

%N we have that

Ila(ab) i < liga it W(iiby) (17)
Thus from (15) we get

He™* = o, ey)

SHaGx™) i Wl e y) (18)

Since W(.) is a non-negative monolope increasing
function of its argument (with the additional property
that W(0)=0) we see that to minimize the norm of
the error at the pew iteration level n+l we must
minimize the norm of the operator q, namely | q(xB) J).
Since the iteration function g(x) is usually dependent on
somc scalar parameters (for instance the time step), we
can allempt to choose these paramelers 0 minimize
Il g(x2) || at each iteration. The calculation of the norm
of q at each iteration s possibly as computatjonally
expensive as solving the original problem. Thus we
must use an approximation to Il 9(x®) |i in order 10 make
the minimization scheme practical. For the example
problem shown below, we estimated the norm as the
sum of the squares of the coefficients of all terms of g
of degrec one. The reason for this is that if these terms
dominate q, then as | b || — 0 the higher degree terms
will approach zero faster than the linear terms. Thus
only the linear terms are left in the numerator of the
RHS of (16). Future research will address the problem
of finding better estimates for Il q(xB) |1

RESULTS

To test the elimination procedure, we solved the
steady state, constant enthalpy, one-dimensional Euler
equations with forcing terms given by

(Pu)y —a(x)=0
(a1p+aypul) ~bx)=0 (20)

on the interval x = {0,1] with prescribed Dirichlet
boundary conditions at x = 0 and x = 1. Here a(x)
and b(x) are prescribed functions, p is the demnsity, u is
the fluid velocity and 3) and aj are constants that
depend on the ratio of specific heats and on the total
enthalpy of the fluid. The continuous system (20) was
discretized using simple centered differences to form the
system of difference equations to be solved:

Pis1Visl ~Pj U ~2;=0

(2 Pis1 * 22 Pis1 v i+12)
Py +vapiguig?)-y=0

fori=2,.., imax - 1

where P1r Pimax: U1, and Uimax are specified Dirichlet
boundary conditions and a(x) and b(x) have been
multiplied by 24x. One can clearly sce that this system
of finite diffcrence cquations is polynomial of degree
three, with the maximal degree of any variable being
two. This is also true for discretizations of the

two-8imensional and three-dimensional steady state
Euler equatjons.

We used the comrection scheme and the
modifications poled above to solve the system for three
values of imax: 6, 8 and 10. The forcing terms were
calculated such that the solution given by

Pj=04+02tanh [5(-1+2 (i-1)/(imax-1))]
Ui = 04~ 03 tach [5 (-1 + 2 (i-1)/(imax-1))]

satisfies the equations exactly. This solution exhibits
shock-like bechavior and can be seen in figs. 2a and 2b.
Figure 2 also shows the initial guess for the solution,
namely a linear variation between the given end-point
values, and the error between the ipitia] guess and the
exact solution. For the cases imax = 6 and imax = 8,
the exact solution was found (to within machine zero)
in ope iteration, and therefore these cases will not be
presented. Figure 3 shows the convergence history for
the velocity u for the case imax = 10. Figure 4 shows
the convergence history for the density for the same
case. Convergence of the solution was obtained after
three iterations. After the first iteration, we note that
10 of the 16 unkpowns have been found exactly;
therefore, only six unknowns remain to be found. Once
it is determined that & variable has been solved for
exactly (i.e. the correction goes to zero) this variable is
eliminated from the system. Thus, the second iteration
is used to determine which variables have converged.
The third iteration is then used to solve for the
remaining six unknowns and the System is solved.

Several points concerning these results must be
poted at this time: 1) After one iteration, some of the
unknowns are scolved for exactly and are completely
eliminated from the system of equations; 2) The
solution procedure involves only the manipulation of
the coefficients and exponents of the polynomial
system, and therefore is quite fast for small systems; 3)
Some criteria must be used to choose a root in the back
substitution process in the case of multiple real roots.
For the test case, we used the criteria that the root
should be the ope that is closest to the exact solution.
This criteria is only applicable in a test case where the
exact solution is known. In a general problem, the
root should be chosen so that either its absolute value
is the smallest of the roots, or that the root produces
the minimal value of the residual of the system at the
new iteration level k+1; 4). This method requires large
amounts of storage. The code that was used to calculate
the presented results made extensive use of unformatted
ipputoutput. Nevertheless, the Vo time was less than
15% of the tota] execution time.

The non-linear stability analvsis method was
lested on the solution of Burgers' equation using the
MacCormack scheme (see ref, 4, pages 154-164 for
dctails). Burgers' equation

up+ 172 (u-uz)x=uuxx (21)

was solved for p = 0.01 on a 21 point grid with
upiform spacing. At each iteration, the linear estimate
of the norm | q(x) || was minimized with respect to
the time step At using a canned subroutipe for
minimization of a function of one unknown. The
initial guess for the solution was a linear varjatiop
between the values at the endpoiots of the grid on the
interval x = [-1, 1}. First, the standard MacCormack
scheme was used to find the converged exact solution.

This solution was then used to geocrate the results of
fig. 5. This figure shows a plot of the error of the
standard MacCormack scheme and the modified scheme
in which an optimal At was chosen at each time step..
The time step used for the standard scheme is as given
in ref. 4. The optimal time steps were fairly constant
and very close to the standard time step. From fig. §
we sec that the standard time step is indeed a good one
since the optimal lime-siepping scheme did not
improve the convergence by much.

We pote that the elimination technique was only
tested for a small one-dimensional prodblem. Larger
one-dimensiopal problems required too much computer
memory for the present version of our computer
program (writlen in FORTRAN for a Cray-XMP
computer). Therefore, it is not known if the
elimination technique will be a practical alternative to
existing Euler solvers. For larger problems, much use
will have to be made of unformatted i/o which could
severely restrict the method's efficiency. Another
aliernative that is being looked into is the use of other
high-level languages such as Pascal! or Lisp that allow
dynamic memory allocation. The use of these laguages
would make it possible to compute much larger
problems than is now possitle with FORTRAN. It is
not known at this time either if the non-linear stability
analysis technique can be made practical. In any event,
the stability analysis is thought to be mathematically
sound, and thus should find use in the theory of
numerical methods.

SUMMARY

A pew method was presented for the direct
solution of polynomial sysiems of equations. The
method is based on the classical theory of polynomial
elimination, and the pumerical implementations of the
elimination scheme have been shown to produce the
correct solutions in a very small number of iterations.
The method is applicable to the steady-state Euler
equations and to the steady-state Navier-Stokes
equations (with certain assumptions).

In addition, a non-linear stability analysis
method was introduced and applied to a simple test case.
This stability analysis method js applicable to
polypomial iteration functions and can be used to
calculate optimal parameters of the iteration scheme.

ACKNOWI EDGEMENTS

Funds for the support of this study have been
allocated in part by NASA-Ames Resecarch Center,
Moffett Field, California, upder Interchange No.
NCA2-16. The authors would like to thank Dr. Harvard
Lomax for his support of this research. This research
was also supported by a National Science Foundation
Graduate Fellowship (supporting the lead author) and by
the Air Force Office of Scientific Research, Grant No.
85-0052, under the supervision of Capt Joho Thomas,
Marager of Computational Mathematics.

References

1. Keonon, S. R, and G. S. Dulikravich,
"Optimal Acceleration Factors for Iterative Solution of
Lincar and Non-Lincar Differential Systems,” Computer
Methods in Applied Mechanics and Engineering, 47,
1984, pp. 357-367. (also AlAA paper No. 85-0162,
Reno, January, 1985).

2. van der Waerden, B. L., Algebra, volumes 1
and 2, Frederick Ungar Publishing Co., New York,
1970. :

3. MACSYMA Reference Manual. Mathlab Group,

Laboratory for Computer Science, Massachusetts
Institute of Technology, 1977.

4. Anderson, D. A., J. C. Tanpehill, and R. H.
Pletcher.) i i
Transfer, McGraw-Hill, 1984.

Y(X)

UQURBRATIC APPROXIMATION

Fig. 1a Plot of approximation of high order polynomial with quadratic approximant:
approximation # 1

I‘DID

QURDODRATIC

PROXTHATION

S£°0

4
000

T
50°0-

01°0-

N
o]

30
W)
¥

T
Q
1

Fig. 1b approximation # 2

ALOG10(ERROR)

CONVERGENCE HISTORY OF MACCORMACK SCHEME
] 1 I l

0. 00

v

—1. 00+ |
-2.00 C—6—0 LINEAR TIME STEP

G—E—a] OPTIMAL TIME STEP
-3.00F

J !
5.0 10.0

ITERATIONS

Fig. 5 Convergence history for solution of Burgers’ equation using linear and optimal time steps

ISP

T _ ! T
0£°0 S9°0 08°0 S5°0C 0S5°0 S¥

[

_ =T T T T !
"0 0r'0 SE°0 0£°0 S2°0 020 SI0 OI'C SO0 00°0 SO'0Q1°0-

(X)OHY

- i ST RTRE

T

[}

W

[

o

[

[Ah]

(3]

AN

Fig. 4c licration # 3 (converged)

8

'

RHO (X

0.2 0.3 0.4 0.5 0.6 0.7

1

0.
|

0.0

-0.1
L

dn

-0.2

-0.3

0.4
PP AP, B

-0.5

—

<
<~
.
T

W

)

X

Fig.4a Convergence history for density: + exact solu tion, A calculated results, o ¢rr o
iteration ¥ 1

Ux)

0.8

0.7

0.6

0.4

0.3

1

0.

0.0

1

U-VELOCITY VS, X

]
(\
@
u]

)

P
N

®

Fig. 3¢ Itcration # 3 (converged)

Uix)

U-VELOCITY VS. X

0.8

o
D'._, Cs_“%:: o Fa

)

U]

0.0 1.0 2.3 3.0 4.0 5.0

X

a1
[on]
N
C

s d]

Fig ™" Neradon # 2

e

U-VELOCITY VS. X

.

0.8

0.7
i

0.6

0.5

0.4

0.3

N
o
(a?
[we)
+
(]
wn
[
2}
(@]
~N
o
o3}
wy]
w
(o)
C
[
O

Fig. 3a Convergence history for velocity: + exact solution, A ca!
iteration # |

~ulated results, o error

RHO (X)

0.2

0.7

DENSITY VS. X

0.4 0.5 0.6

0.3

0.1
A

0.0

-0.1

e, e

-1.2

3.0

(€3}
[
4
[
U
U
an
li
N
O
Q

X

Fig. 2b Exact solution, initjal gucss and error for the density p
+ exact solution, A initial guess, o error

)
Q
—
[am}
(e8]

e T

U Xy

U-VELOCITY VS. X

0.8

[\
(@]
W
o
N
(@]
[o
-
(o3
O
~
L
L
w
(W]

X

Fig. 22 Exact solution, initial gucss and error fc- the velocity u
+exact solution, A ini.. guess, o ermor

o -

[

Y(X)

QUABRATIC APPROXIMATION

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

-0.07

-0.08

)
[ws]
[\

i
(&)
—
fwn]
[w]
()]
o)
[9]

o
[N

