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Introduction

In this chapter, we address application of boundary element methods (BEMs)
and boundary domain integral methods (BDIMs) to the solution of inverse
problems. The treatment is divided into three broad applications: steady heat
conduction, steady fluid flow, and elastostatics. Within each section, several
applications are presented, and each section contains conclusions appropri-
ate for that section. Some comments about the potential application of these
methods to source detection and unsteady problems closes out the chapter.

Inverse heat conduction

Determination of number, sizes, locations, and shapes of
internal coolant flow passages

This is one of the most straightforward inverse problems. During the past
two decades, we have been developing a shape design methodology and
accompanying software capable of determining the minimum number and
correct sizes, shapes, and locations of coolant passages in arbitrarily shaped
internally cooled configurations (Dulikravich, 1988; Dulikravich and Koso-
vic, 1992; Dulikravich and Martin, 1994, 1995, 1996). The method requires
specification of both the desired temperatures and heat fluxes on the outside
surface, and either temperatures or convective heat coefficients on the
guessed internal coolant passage walls. An initial guess of the total number,
individual sizes, shapes, and locations of the coolant flow passages must
also be provided. A general-purpose constrained optimization algorithm
then minimizes a difference Equation (6.1) between the specified and com-
puted outer surface heat fluxes (or temperatures) by relocating, resizing,
reshaping and reorienting the initially guessed coolant passages.
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All unnecessary coolant flow passages are thus reduced to a very small
size and eliminated while honoring the specified minimum distances
between the neighboring passages and between any passage and the thermal
barrier coating, if such exists. This inverse shape design methodology has
been successfully demonstrated on internally cooled coated and non-coated
axial gas turbine blade airfoils and three-dimensional blades, scramjet com-
bustor struts, and cooled three-dimensional rocket engine combustion cham-
bers.

Inverse determination of thermal boundary conditions

Inverse heat conduction problems (IHCPs) represent a subclass of ill-posed
problems that have been extensively investigated. The unsteady THCP
involves estimation of the unsteady boundary heat fluxes utilizing measured
interior temperature histories. The typical iterative unsteady IHCP algo-
rithms amplify measurement data errors as well as round-off errors. A review
of the IHCP literature reveals the use of the least sum of squares approach
where the overall error between the computed and measured temperatures
is minimized (Beck et al., 1985). Here, the sum S in Equation (6.1) is mini-
mized with respect to the unknown heat flux components on the inaccessible
boundaries. The iterative solution of the unsteady IHCP has several prob-
lems. Foremost, error that is introduced into the algorithm, either by round-
off, discretization, or in the measurement data, is magnified as the solution
proceeds. The resulting heat fluxes are corrupted by this noise and fluctuate
erratically. The method of regularization (Tikhonov and Arsenin, 1977), dis-
crete mollification against a suitable averaging kernel (Murio, 1993), and
other filtering techniques (Twomey, 1963; Beck et al., 1985; Aliabadi and Hall,
1989) have been implemented to control the level of these errors. The regu-
larization method is a procedure that modifies the least squares approach
by adding factors that are intended to reduce fluctuations in the unknown
functions. Mollification methods* act to smooth the extrapolated fluxes.

To date, many solutions of the unsteady IHCP are performed for specific
geometries and cannot be readily extended to complex geometries, since
most attention has been focused on the one-dimensional unsteady IHCP.
Another basic concern is that relatively few of the IHCP techniques used in
engineering provide a quantitative method for determining what effect their
smoothing operations have on the actual heat conduction physics.

Hli-posed boundary conditions using the BEM

A simple modification to the boundary element method (BEM) has been
found to be a very powerful alternative to the more common unsteady IHCP
methodologies by solving the steady IHCP (Martin and Dulikravich, 1995,
1996, 1998; Dulikravich and Martin, 1996). The BEM has been used to solve
many subclasses of ill-posed problems for multidimensional, multiply con-

* See Chapter 4.
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nected domains, including regions with different temperature-dependent
material properties. In the case of heat conduction with internal heat sources,
the boundary element method produces a system of linear algebraic equa-
tions.

[CI{U}+[H]{U} = [G]{Q}+[D]{B} (6.2)

Here, {U} is the vector of boundary nodal temperatures, {Q} is the vector
of boundary nodal heat fluxes, {B} is the vector of nodal heat sources per
unit volume, and [C], [H], [G], and [D] are coefficient matrices that are
developed by integrating the Green’s function kernel over the discrete
boundary and domain elements.

In the well-posed heat conduction problem, the BEM produces a solution
matrix that can be solved by a Gaussian elimination or LU decomposition
matrix solver. When an ill-posed problem is encountered, the matrix becomes
highly ill conditioned. The proper solution to this ill-conditioned matrix can
provide accurate results to various steady IHCPs. The method has also been
shown not to be overly sensitive to measurement errors. The approach is
somewhat similar, at least in theory, to selectively discarding eigenvalues
and eigenvectors of a particular system of equations that tends to magnify
errors (Hansen, 1997).

When temperatures are known at discrete locations within the domain,
in addition to being on the boundary, additional equations can be added to
the set of boundary integral equations.

Uimp(0) + [4" (2 E)UET = [u'(xE)q@)T + [ (xOBEMEQ  (6.3)
r r Q

Here, u,,, is the temperature at an internal point. Any number of these
equations can be added to the BEM system, because c(x) = 1.0 at an internal
point. Thus, we only need to subtract the temperature measurement u;,,,(x)
from the right-hand side of the BIE. When the temperature gradient was
known at some location in the domain, the following integral equation was
derived by taking the gradient of the original BIE. The gradient operates on
the field coordinate x and treats the source coordinate £ as constant.

)V ithimy(X) + [V (O = [V, (6,8)qE)T + [Vou' (x,E)BE)MQ  (6.4)
r r Q

These functions are more difficult to integrate than 4* and ¢* because of their
higher-order singularities. To overcome this difficulty, greater care must be

(6.5)

&
4
i
o
2

Chapter six:  Bo

These functions
higher-order sin
taken by using
(Guiggiani et al.
V.4 resultsin e

Point heat
If the heat sourc

coordinates ¥.1,3
BIE will result i:

where the entrie
Dirac delta func

D

Higher-order so
be proved by me

is of the form

Dipoles, quadru:




ering Handbook

ure-dependent
al heat sources,
\gebraic equa-

(6.2)

Q} is the vector
:at sources per
itrices that are
2r the discrete

{uces a solution
decomposition
natrix becomes
ned matrix can
d has also been
he approach is
ng eigenvalues

ads to magnify

iin the domain,
an be added to

£)dQ (6.3)

umber of these
0 at an internal
urement u,,,(x)
e gradient was
d equation was
ent operates on
‘onstant.

b(E)de (6.4

{ for an internal
vo-dimensional
‘ms) are added
nts of the two-
> are

Chapter six: Boundary element techniques for inverse problems

(6.5)

These functions are more difficult to integrate than u* and g* because of their
higher-order singularities. To overcome this difficulty, greater care must be
taken by using more integration points or by hypersingular integration
(Guiggiani et al., 1992). This equation is not valid on the boundary, because
V.q results in a second-order singularity on the boundary.

Point heat sources
If the heat source function consists of impulsive heat sources located at the
coordinates ¥.i,%s,...,xss with strengths b,b,,...,bs, the discretized form of the
BIE will result in the following equation set.

[CH{U+[H]{U} = [G{Q}+[D,]{B}

(6.6)

where the entries in the [D,] matrix are computed by using the nature of the
Dirac delta functions.

3 .2 b, *
D,;B;; = %Ibsl‘a(&—}#)u E-2)dQ = #u G- %) 6.7)
a

Higher-order solutions may be used to determine higher-order poles. It can
be proved by mathematical induction that the solution to Laplace’s equation
is of the form

1 .
5= Ajin(r—B)) 2D

(6.8)

&
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1 G-
men! 3D

A. -_—_AL

- 4G+1)

,1 2(AL+B,-)
4G+ 1)N\j+1

j+1

(6.9)
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Dipoles, quadrupoles, and other forms of the solution to the Laplace’s equa-
tion appear as

u; = erij(cose) (6.10)

where P; are Legendre polynomials.
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Ill-posed boundary element method

As an example, consider Laplace’s equation within a i i

(Figure 6.1), which will be discretize%l with only fourci}lmaeirrﬂ;:)iﬁ:lgomalm
ments, connected together by four nodes, one at each corner of the I;1yacei Y
lateral. The boundary conditions will be specified by node. At two (c]o s
of th(? quadrilateral domain, both u = # and ¢ = g are kno'wn while I;ne}fs
remz;:/rq?tg two corners, neither quantity is known. ot

ritten explicitly, t i i i
rally apon fs fougwl;e BEM solution set for the ill-posed problem origi-

hy hyy ks by, u &1t 812 813 ua| | Gy
ot hyy by byl | 1, = |821 822 823 §2)) G
hay By hys byl | g 831 832 833 834 | 4
hay hay by hyy Uy 841 842 43 Sus| | G4

(6.11)

y To solve this set, all of the unknowns will be collected on the left-hand
side, and ftll of ‘the knowns are assembled on the right. A simple algebraic
manipulation yields the following set:

by 813 hyy =& | U3 ~hy g —hy, S|
s —823 —824|) 43 = ~hy, & —hy 8»|) 9. 6.12
B3y ~833 by, —834| | Uq ~h3y g3 ~hy, 8n|| U €12
hy —843 hay —844| | 94 ~hy 8 —hyy 8al| 92

u=? & q=? U= & q3=?

4
23

Chapter six

The m.
known bot
hand side
added to t
dient meas
general, th.
tioned (Ma
well enoug
system. H¢
(5VD) has
matrix prol

After tl
the SVD aj
obtained fr
determinec
could be d«

Here, T,,,

inversely d«
of arbitrary
ysis, has pr

Trunc

These techn
lems. The g
the error (G

which is the
space. The

ering Handbook

lateral domain
boundary ele-
- of the quadri-
At two corners
n while, at the

problem origi-

367

Chapter six: .Boundary element techniques for inverse problems

The matrix on the right-hand side may be multiplied by the vector of
known boundary conditions to form a vector of known values, {F}. The left-
hand side remains in the form [A]{X]. Also, additional equations may be
added to the equation set if, for example, temperature or temperature gra-
dient measurements are known at certain locations within the domain. In
general, the coefficient matrix [A] will be non-square and highly ill condi-
tioned (Martin and Dulikravich, 1995). Most matrix solvers will not work
well enough to produce a correct solution of the ill-conditioned algebraic
system. However, an algorithm known as singular value decomposition
(SVD) has proven to give accurate results even for such ill-conditioned

matrix problems.
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The matrix on the right-hand side may be multiplied by the vector of
known boundary conditions to form a vector of known values, {F}. The left-
hand side remains in the form [A]{X}. Also, additional equations may be
added to the equation set if, for example, temperature or temperature gra-
dient measurements are known at certain locations within the domain. In
general, the coefficient matrix [A] will be non-square and highly ill condi-
tioned (Martin and Dulikravich, 1995). Most matrix solvers will not work
well enough to produce a correct solution of the ill-conditioned algebraic
system. However, an algorithm known as singular value decomposition
(SVD) has proven to give accurate results even for such ill-conditioned




After the ill-conditioned coefficient matrix [A] has been inverted using
',‘ the SVD algorithm, the unknown boundary values of T and Q could be
(6.11) ] obtained from {X} = [A]'{F}. Once these thermal boundary values were
3 determined on the boundary T,,,,, the convective heat transfer coefficients
could be determined from (Martin and Dulikravich, 1998)

n the left-hand 9T
mple algebraic £ on|r
Hopny = so——ime 6.13
] I o1
Here, T, is considered as known. This noniterative BEM approach to
612) inversely determining distribution of heat convection coefficient on surfaces

of arbitrary bodies, without a need for computational fluid dynamics anal-
ysis, has proven to be very accurate (Figure 6.2).

Truncated singular value decomposition

o ] \ These techniques are widely used in solving most linear least squares prob-
) lems. The goal of the SVD is to choose a solution vector {X} so as to minimize

S R e B

the error (Golub and Reinsch, 1970; Hansen, 1997; Press et al., 1986),
E = I{F} - [A}{X}] 6.14)
¥

which is the distance from the point {F} to the point [A]{X} in the column
space. The solution vector {X] is the projection of {F} onto the subspace,
which the column vectors of [A] define. Any M x N matrix [A] can be written
as the product of an M x N column-orthogonal matrix, [U], an N x N diagonal
matrix [W] with positive singular values, and the transpose of an N x N
orthogonal matrix, [V].

w, 00
(Al = [Ul{ o . o [[V] (6.15)
0 0wy

linear boundary
s prescribed by
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FIGURE 6.2 Comparison between values of variable heat convection coefficients
obtained with a forward and inverse BEM formulation on one side of a rectangular
plate.

The singular values {w;, w,,..., wy} are the eigenvalues of the square of the
matrix [A]"[A]. For a well conditioned matrix, these values will be roughly
of the same order of magnitude. As the matrix becomes more ill conditioned,
these values become more dispersed. Formally, the condition number N, of
a matrix is defined by the ratio of the largest of the singular value to the
smallest singular value.

N, = log o 3] (6.16)

min

If the matrix [A] is singular, then there is some subspace of {X}, called the
null space, that is mapped to zero, [A]{X} = (0}. The SVD explicitly constructs
orthonormal bases for the null space and range of a matrix [A]. The columns
of [U] corresponding to the non-zero singular values make the orthonormal
set of basis vectors that span the range. The columns of [V] corresponding
to the zero singular values are an orthonormal basis for the null space.

LU factorization and Gaussian elimination may give a formal solution
to an ill-conditioned set of equations, but the solution vector will have highly
oscillating components whose algebraic cancellation, when multiplied by
the matrix [A], gives a very poor approximation to the vector {F}. Eliminating
very small singular values has the effect of removing those algebraic terms
that, because they are dominated by noise and round-off error, produce the
oscillating solution.
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To determine which singular values are to be truncated, we must choose
a parameter T as a singularity threshold. Any singular value whose ratio
with the largest singular value is less than this singularity threshold is zeroed
out. The zeroing of a small singular value corresponds to throwing away
one linear combination from the set of equations that is completely corrupted
by round-off error. The choice of 7 is based upon the information about the
uncertainty in the BEM matrix computation, the machine’s floating-point
precision, and the standard deviation of the measurement errors in the
boundary condition data. In fact, there is a range of threshold values where
the algorithm will produce a correct solution. A choice of the threshold
outside of this range will yield another solution vector whose direction is
very nearly the null space vector. Since [U] and [V] are each orthogonal in
the sense that their columns are orthonormal, the solution vector can be
easily found.

(X = 1v1[diag(5-|Jc0r1FD) (6.17)

To zero out a singular value, one should simply replace the associated 1/w;
value by zero. Since the SVD algorithm is capable of solving non-square
matrices, the number of unknowns in the equation set need not be the same
as the number of equations. Thus, virtually any combination of boundary
conditions and internal temperature measurements will yield at least some
solution.

Tikhonov regularization
Tikhonov regularization (Tikhonov and Arsenin, 1977) is another type of
single-parameter minimization where the solution vector {X} minimizes the
weighted sum of the norm of the error vector defined by Tikhonov.

E = [{F} - [AN{XH +M{X} (6.18)
A minimum error norm is found by differentiating this equation with respect
to each component of the unknown vector {X} and setting the result equal
to zero. After substituting the singular value decomposition and solving for
the unknown vector {X}, the resulting formulation is as follows:

{X} = [VIUW] [WI1+A[I]) ' [WI'[UI{F} (6.19)

where [I] is the identity matrix. Tikhonov regularization is a generalization
of least-squares truncation but, instead of simply eliminating terms associ-
ated with small singular values, they are weighted by a factor (1 + A/w?).
The regularization parameter A plays an important role. A low value drives
the residual term [A]{X} - {F} smaller, approaching the least squares solution.
Because of the destabilizing effect of the small singular values, the solution
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for an ill-conditioned matrix oscillates erratically. Larger Tikhonov regular-
ization parameters A act as a filter to gradually reduce the effect of the
singular values, because they are smaller than the regularization parameter.
Thus, the optimal choice of the regularization parameter provides a balance
between the accuracy and the smoothness of the solution. Tikhonov sug-
gested that this parameter could be found based upon knowledge of the
measurement errors.” The suggested value of A should be chosen between

LN- 2N o’ <A<|N+ /2N |o? (6.20)
where N is the number of temperature measurements and o? is the variance
of those measurements.

Phillips-Twomey reqularization

This is a somewhat more sophisticated regularization algorithm that begins
with the error norm defined as the weighted sum of the error vector and an
arbitrarily selected constraint (Twomey, 1963). The constraint is imposed on
the solution through a constraint matrix [Z].

E = |{F} - [AH{F} + MEXFIZI{X} (6.21)
Notice that this equation becomes identical to Tikhonov regularization when
the identity matrix is used as the constraint matrix. The error is minimized
to obtain the solution vector.

{X} = [[AT[A]+ALZ]] ' [AK{F} (6.22)
The purpose of the constraint matrix [Z] is to prevent the elements of {X}
from assuming arbitrarily large values or from fluctuating rapidly. Since the
second finite differences of the solution vector are generally used as a mea-
sure of the smoothness, the constraint matrix is often defined as

[Z] = [K]"[K] (6.23)
where the [K] matrix of second finite difference operators is
[0 0 00... 0
1-2 10... 0
K= |0 121 0 (6.24)
0... 01 2-1
0 0 00 0 0

* This is the discrepancy principle.
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Effects of discretization

The outer and inner boundaries of concentric circular surfaces were dis-
cretized with M/N isoparametric linear boundary elements connected
between the same numbers of nodes. The outer boundary was overspecified
with both constant temperature and flux boundary conditions (1, = 1.0, g, =
0.4976) taken from the analytic solution, while nothing was known on the
inner circular boundary, and no heat sources were applied. Various levels of
discretization were employed such that M/2 = 12, 24, 36, 48, 72, 84, 144
(Figure 6.3). Each BEM solution matrix was square, (M x N), all had very
similar ranges of singular values, and the condition number of each matrix
was between 7 and 8. The computed temperature functions and flux distri-
butions on the inner boundary were very accurate, approaching the analytic
solution with the increasing level of discretization. The variance in the output
(computed) nondimensional temperatures,

M/2
or= Y (T,-T) (6.25)

m=1

where T is the mean temperature, were examined for a range of singularity
thresholds 7 varying between 1.0 and 106, Figure 6.3 illustrates the effect
of the user-specified SVD singularity threshold t on the output temperature
variances for a range of discretization levels (Martin and Dulikravich, 1996).
The idea is to simultaneously minimize the output variance and the bias.
The bias (difference-between computed #,,,, and the analytic solution) in
the results approached zero as the level of discretization increased while the

T’ D' T.T¥ U -7 1 LI
d . d L q -8 .. 4 =3
e 14 12 10 °

10 0 1 1
Singularity Threshold t

10 - .,.:\
o ] — W2-12
g ] b — M/2-24
20 ] =3 — M/2=36
[ S e M/2=48
& \h ---. M/2=60
& o] % e M/2=84
Froo" s === M/2=144
£ A ':% .
8 ' o
[ =
-f-;“10‘- [y
= )
5 3 —
o] 3
O ----------------
T

FIGURE 6.3 Output variance in temperature versus singularity threshold to show
the effect of discretization on the ill-posed BEM.
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output variance reached a minimum at about M/2 = 36 linear boundary
elements per circle. This bias was, therefore, attributed to the fact that linear
elements were used to model a circular geometry. The effective range of the
singularity threshold t that produced the best results for all levels of discret-

ization was 0.08 < T, < 0.004.

Results with input data noise

The major concern of researchers working on inverse problems is with the
sensitivity of their algorithms to errors in the specified boundary conditions.
To verify that our technique did not amplify the input data errors, random
Gaussian noise was introduced into the temperature function supplied to
the outer circular boundary. The same annular geometry was used for this
purpose, and the nondimensional heat generation was included as a con-
stant. For the temperature boundary condition on the outer boundary, a
uniform random real number R between 0.0 and 1.0 was generated (IMSL,
1982). Using this value as the normalized probability density function, a
noisy temperature boundary condition on the outer circular boundary was
determined from the Gaussian distribution.

For the inverse problem, no boundary conditions were specified on the
inner circular boundary, and the outer circular boundary was specified with
the flux and temperature taken from the analytic solution. Each circular
boundary was discretized with M/2 = 36 boundary elements. Ten rows of
quadrilateral cells discretized the circular annular domain,

The inverse BEM program was tested with a variety of input (outer
boundary) variances 6? (Martin and Dulikravich, 1996). Figure 6.4a depicts
the variance computed by the program as the inner boundary temperatures
for a range of input error in the outer boundary temperatures. Results are
shown for a range of singularity thresholds. The optimal SVD threshold Topt
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occurs when the variances in the output (inner boundary) temperatures and
heat fluxes are minimized.

These parameters remained relatively constant and independent of all
levels of input variance. This is obvious, because the boundary conditions
do not affect the matrix.

When using the SVD the inpiit ctarndard dociab ~me b A AAA1

Chapter six:

occurs when
heat fluxes ar
These pa
levels of inpu
do not affect
When usi
and 6 = 1.0 yic
old was 0.08 <
mal regulariz:
input standar:
tion paramete
standard devi.
the output va
variances. Th:
amplify varia:
erated error w
results were f(
In additio
entering throu
leaving throuy
domain.

When the SVL
computed and
variance. Inste
larization para
unfortunate, b
Figure 6.5 ind:
output varianc
detrimental bel

Obviously,
affects the phy:
concluded that
regularization,
highly biased r

Inverse de
When heat flux
surements take:

solve for the t
Fa VWi el - AT




rineering Handbook

» linear boundary
the fact that linear
xctive range of the
Il levels of discret-

blems is with the
indary conditions.
ita errors, random
wction supplied to
was used for this
ncluded as a con-
uter boundary, a
generated (IMSL,
ensity function, a
lar boundary was

‘e specified on the
~as specified with
ion. Each circular
ents. Ten rows of
1

y of input (outer
igure 6.4a depicts
lary temperatures
itures. Results are
SVD threshold 1,

e @ w 0.0
== @ = 0,000
|~ @ 0001
— ¢=001

- o=005

i 10°° 10
ulerization Parameter (A

®)
7) temperatures as a

b) Tikhonov’s regu-
on o in temperature.

Chapter six:  Boundary element techniques for inverse problems 373

occurs when the variances in the output (inner boundary) temperatures and
heat fluxes are minimized.

These parameters remained relatively constant and independent of all
levels of input variance. This is obvious, because the boundary conditions
do not affect the matrix.

When using the SVD, the input standard deviations between o = 0.0001
and 6 = 1.0 yielded a minimum output variance when the singularity thresh-
old was 0.08 < 1, < 0.04. When Tikhonov regularization was used, the opti-
mal regularization parameter A varied significantly according to the level of
input standard deviation. Figure 6.4b shows how the Tikhonov regulariza-
tion parameter A strongly affects the output variances for a range of input
standard deviations c. At the optimal value of the regularization parameter,
the output variances were of the same order of magnitude as the input
variances. These figures demonstrate that this BEM algorithm does not
amplify variances in the input measurement data. A random number gen-
erated error was then introduced into the input heat flux data, but similar
results were found.

In addition, global energy conservation requires that the net heat flux
entering through the overspecified boundary must balance the net heat flux
leaving through the unknown boundary plus any heat generated in the
domain.

0. = -k j 4.dT = k rj 4T + i %%dﬂ (6.26)

When the SVD algorithm was used, the bias in Q, (difference between the
computed and the analytical value Q, = -1.348) was not affected by the nput
variance. Instead, as Figure 6.4b shows, an increase in the Tikhonov regu-
larization parameter A is required to minimize the output variance. This is
unfortunate, because Q, becomes increasingly biased as A becomes larger.
Figure 6.5 indicates that this bias becomes unacceptably large when the
output variance reaches its minimum. However, the SVD did not exhibit this
detrimental behavior.

Obviously, Tikhonov regularization introduces artificial dissipation that
affects the physics of the problem and biases the output heat flux. It can be
concluded that the SVD technique is more robust and reliable than Tikhonov
regularization, since the latter can mislead the observer into thinking that a
highly biased result is correct because it appears to be smooth.

Inverse determination of temperature-dependent thermal conductivity
When heat fluxes are known over the entire boundary via steady-state mea-
surements taken on the entire surface of the object, the BEM can be used to
solve for the transform of the Kirchhoff heat functions on the boundary
(Martin and Dulikravich, 2000).

[H{U}=[G]{Q}=(F} (6.27)
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FIGURE 6.5 Bias in the net heat flux through the inner boundary as a function of

the Tikhonov regularization parameter A. The nondimensional analytic flux is Q, =
-1.348.

The matrix [G] can be multiplied by the vector {Q} to form a vector of known
quantities {F} so that the matrix [H] can be inverted to obtain the values of
{U} at each boundary node. The matrix [H] appears to be well conditioned
so that regularization methods are not required. A caution should be exer-
cised, since the level of ill-conditioning exhibited by the matrix [H] could be
reduced artificially due to coarse discretization. Since the inversion is non-
unique when only Neumann-type (heat flux) boundary conditions are pro-
vided everywhere on the boundary, the arbitrary constant can be determined

by specifying at least one Dirichlet boundary condition. Therefore, a modi-
fied Kirchhoff transform is required.

T
u=u+ J'I%T)dT (6.28)

T, 0

Here, k, is a reference conductivity value, and T, is the minimum value
of the measured boundary temperature. The minimum value of Kirchhoff
function, u,,,, occurs at the minimum temperature, T,,,. Thus, u; =T, = T,,,
makes one Dirichlet boundary condition. Then, the BEM can be used to
obtain the values of the heat function {U} on the entire boundary except at
the location of the minimum temperature reading. At this point, the normal

derivative 4, = (Ju/dn), will be computed. since T-. is snacifiad tham
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surements, taken either nonintrusively on the boundary, or intrusively at
isolated interior points, can be used to convert the heat functions, u(T), into
the corresponding values of thermal conductivity, k(T), at the same physical
locations where the measuring instruments were placed. Thus, knowing both
vectors {U} and {T}, the vector [K} can be determined by performing numer-
ical differentiation (Hansen, 1997) of {U} (Figure 6.6).

Treatment of corners in ill-posed problems

The accuracy of the ill-posed BEM formulation was shown to deteriorate as
the amount of overspecified data decreases and when the distance from the
overspecified data increases (Martin and Dulikravich, 1995, 1996). It was also
noticed that the accuracy of this approach deteriorates in the vicinity of
geometric singularities, especially when only Dirichlet boundary conditions
are specified across a sharp corner (Kassab and Nordlund, 1994; Trevelyan,
1994). In the implementation of the direct BEM for the solution of the heat
conduction equation, the heat flux at a corner is double-valued due to the

function of non-uniqueness of the outward normal at the corner point. This fact poses
Tuxis Q,= a numerical problem at nodes located at these corners. In two-dimensional

problems, there are three variables at such nodes — the temperature and

two normal temperature derivatives — while only one boundary integral
of known : equation is available. Thus, there can be six major types of boundary condi-
values of | tions applied to that corner node.
nditioned
1be exer- 1. Dirichlet (one temperature specified and two unknown fluxes)
|C9“1d be 2. Mixed (one temperature and one flux specified and one unknown
n 1s non- ﬂux)
St are p r(:i 3. Neumann (two fluxes specified and one unknown temperature)
. anmosi 4. Robin (two flux equations relate to one unknown temperature)
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|l|1||IA||\I|1AAm
(6.28) S peniwna |
= Twomey (sigme=0.1) | 200
€ e  Bspline L2 (sigma=0.1)
E Analytic

um value g
Kirchhoff g
: Tl = Tmin §
2 used to H
except at 2
e normal
here.
1tire field Temperature (K)
Kirchhoff
e bound- FIGURE 6.6 Inverse prediction of thermal conductivity variation with temperature
aure mea- for a keyhole-shaped specimen made of copper.




376 , Inverse Engineering Handbook

5. Overspecified (one temperature and two fluxes specified)
6. Unknown (one temperature and two fluxes unknown)

The first four boundary conditions occur in the well-posed problem. In case
1, Dirichlet boundary conditions provide one of the three unknowns for each
corner node while two fluxes remain unknown. Only one boundary integral
equation exists to determine two unknown fluxes. In this case, one additional
equation must be provided. The last two boundary conditions occur in the
ill-posed problem. The overspecified boundary condition is not a problem.
When the corner node is on an inaccessible (unknown) boundary, three
unknowns are located at a single node, but only one BIE and one overspec-
ified boundary condition can account for them. Herein lies the problem when
an inverse problem contains corners where the underspecified boundary
contains sharp corners. The following is a list of approaches that were
attempted to correct the corner problem.

. Clustering toward the corner

. Double-node formulation (Brebbia, 1978)

Discontinuous element formulation (Brebbia and Dominguez, 1989)

. Double-valued flux related to temperature boundary condition
(Kassab and Nordlund, 1994)

5. Rounded or filleted corners

AW e

Although each of these approaches works well in the forward problem or
well-posed analyses, difficulties arise when the inverse or ill-posed problems
are encountered. Sharp corners produced errors of about 3 to 5% in the heat
fluxes predicted on two-dimensional problems, and this error may be mag-
nified by the inverse procedure. The errors are about five times larger in
three-dimensional problems. It is highly desirable to improve the numerical
prediction of inverse boundary conditions. So far, we have found no univer-
sally adequate formulation for the accurate treatment of corners for the ill-
posed problem. The difficulties are attributed to the smoothing effects that
the regularizers have on the solution matrix, which usually has more
unknowns than equations.

In an attempt to reduce the error associated with the geometric singu-
larities of sharp corners, the boundary elements were clustered toward the
corner nodes using a sinusoidal function. An increasing amount of clustering
only slightly improved the forward solutions where the boundary conditions
are well posed. When ill-posed problems were attempted, an increasing
amount of clustering actually worsened the results.

As an example, a two-dimensional square plate was generated with a
centrally located square cavity. In the forward problem, the outer surface
was specified with a nondimensional temperature of 1.0 and the inner sur-
face with a nondimensional temperature of 0.0. Heat sources were ignored.
The BEM predicted the values of the heat fluxes on the outer and inner
square boundaries. The fluxes predicted on the outer boundary were then
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overspecified along with the constant temperatures. Nothing was specified
on the inner boundary.

The BEM coefficient matrix became ill conditioned, and it was inverted
using the truncated SVD with a singularity threshold of 0.001. The BEM
predicted the values of temperature and flux on the inner square boundary.
The temperature field was subsequently produced in an explicit manner.
Figure 6.7a shows the isotherms predicted by the ill-posed BEM using ten
equal-length linear boundary elements on each side of the square. The
boundary grid was then clustered toward the corners of each square bound-
ary. Various magnitudes of the clustering parameter were used. The ill-posed
results worsened with increasing amounts of clustering. For example, Figure
6.7b shows the isotherms predicted by the ill-posed BEM using ten clustered
linear boundary elements on each side of the square.

Double-node formulation

The double-node formulation is the most common method for correcting the
corner problem. It was introduced by one of the founding contributors to
the BEM (Brebbia, 1978). For two-dimensional problems, the node at the
corner is split into two nodes. This allows for the introduction of one addi-
tional equation for the unknown flux. The new nodal values can be related
to the nodal values at the endpoints of an isoparametric linear boundary
element (Figure 6.8).

&
I

a a
1—=Ju, +-u,
s s

(6.29)

Here, s is the length of the boundary element. The normalized distance by
which each node is moved from the corner (a/s or bfs) is a user input. The
shape functions are written as follows.

u) = u,,[%(l —E,,)sfa_ﬁb +%(1 +§)s___;b_ b:‘+

1 -a 1 s—a
u"[i(l_é)s—a—b-'-i(“.é)s—a—b]

(6.30)

This corner treatment is not extremely difficult to employ in a BEM algo-
rithm. It introduces one additional boundary integral equation for each
corner and has a greater complexity when the singular integration is con-
sidered. A relatively simple analytic solution can be obtained when the
singularity occurs at the endpoints of the element. It must be replaced by a
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FIGURE 6.8 Double-node illustration for linear boundary elements.

complex analytic solution when the singularity is at an arbitrary location on
the element. Many BEM codes use double-noded elements exclusively, but
this can effectively double the number of nodes and increase the CPU time
required to develop and solve the BEM system of equations.

The double-node corner treatment was attempted on an ill-posed prob-
lem. A 1 x 1 square plate with a centrally located 0.5 x 0.5 square hole was
originally specified with a nondimensional temperature of u, = 1.0 on the
outer boundary and u, = 0.0 on the inner boundary. Each side of each square
boundary was discretized with eight linear boundary elements. The BEM
solved this well-posed problem with and without corner treatment. The
fluxes on the outer boundary were taken from this computational solution
and entered as boundary conditions for the ill-posed problem. The outer
boundary was overspecified with U4, = 1.0 and the computed fluxes. Nothing
was specified on the inner boundary. The BEM solved the ill-posed problem
for the inner surface temperatures and heat fluxes. When no corner treatment
was employed, the error was at most 3%. The double-node corner treatment
actually worsened the ill-posed computation by as much as 10% error in
temperatures on the inner boundary for the best case when a/s = 0.5.

Discontinuous elements

The method of discontinuous elements does not require any modification
to the BEM algorithm. Instead, the boundary grid is generated such that
. theendpoints of the boundary elements do not touch each other at a corner.
» The boundary elements are separated by a user inputted value p (Figure
o 6.9).

ndary
rically
>thing

o o

FIGURE 6.9 Discontinuous element description.
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The previous test case of a square hole inside a square plate was repeated
with the discontinuous element treatment applied at every corner. The accy-
racy of the forward BEM has been improved. The inverse problem was
formulated by overspecifying the outer boundary with temperatures and
heat fluxes predicted by the forward analysis. Although the discontinuous
elements method increased the accuracy of the forward BEM, when discon-
tinuous element treatment was used, the error of the inverse solution was
increased to about 5%. The accuracy was found to deteriorate as the sepa-
ration between the elements P gets larger. This is because, as p is increased,
the boundary is fitted more poorly, and worse results are expected. The best
results occur when p = 0. Although the boundary is continuous when p =0,
each corner is split into two nodes. The integration over the boundary ele-
ments connected to the corner contains the singular fundamental solution,
and more Gaussian quadrature integration points were required. At all levels
of discretization, the inverse results with corner treatment were worse than
those without corner treatment.

Double-valued flux

This technique (Figure 6.10) requires a simple modification to the BEM
algorithm. When a Dirichlet boundary condition is specified across a corner
node, the normal gradients before and after the node can be related to the
tangential and normal gradients of the adjoining elements.

ou\ _ (du Juy .
(E;l)b = (a—n)ncose—(a—s)asme

ou Jdu duy .
(a—n)a = (a—n),, cosO + (g)b sin@

(6.31)

FIGURE 6.10 Double-valued flux description including the discontinuous normal
and tangential derivatives at a concave corner of two adjacent linear boundary
elements.
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Here, s is the contour following coordinate direction and 0 is the angle by
which the tangent turns at the corner. The tangential derivatives are calcu-
lated by differentiating the potential boundary condition along the boundary
elements adjacent to the corner node.

Although two additional equations are given while only one is required,
the user can choose to use one or the other or combine the two equations
by subtraction, addition, multiplication, or division. The BEM heat conduc-
tion algorithm was tested on the plate with a centrally located square hole.
This procedure offered a slight improvement (3% error) to the inverse prob-
lem where the boundary conditions on the square cavity were unknown and
the outer square boundary was overspecified. The inadequacy of this corner
treatment was confirmed on a more complex configuration where the inner
Z-shaped cavity contained sharper corners (Figure 6.11).

The outer square boundary was overspecified with a constant temper-
ature u, = 1.0 and fluxes, predicted by the forward BEM that correspond to
a constant temperature u, = 0.0 on the inner Z-shaped boundary. The iso-
therms predicted by the well-posed BEM are shown in Figure 6.11. Notice
that the sharper, or more obtuse, the corner becomes, the larger the error
that is produced near those corners. These errors are attributed to the fact
that the solution matrix of the ill-posed system is not square, because three
unknowns exist at each inner cavity corner.

Filleting the corners

In a final attempt to resolve the corner problem, the procedure of rounding
or filleting the corners was attempted. In this approach, the core BEM algo-
rithm was not altered. Instead, the input file to the BEM program was
developed with a different boundary-meshing algorithm that replaced the
straight boundary elements connected to the corner with a curved line. A
number of extra nodes, which was a user-input integer N,,,,, were added.

FIGURE 6.11 Isotherms predicted by the ill-posed BEM in a Z-shaped cavity within
a square plate using the double-valued flux corner treatment.
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Figure 6.12 illustrates the smoothing of the linear boundary elements around
a sharp corner node.

The index of the corner is specified asi. A smoothing function was chosen
such that the sharp corner was reduced to a sinusoidal curve. The sinusoida]
curve was provided an exponent that determined the amount of sharpness
at the corner. '

)
|

2
; = Psin e [%t:l

= o jn )
¢ SIH(Nextra +1

(6.32)

In this equation, the parameter P, where j = 1, 2, 3, defines the position of
the jth extra node added at the corner. These nodes are interpolated between
the line ¢ connecting the nodes with indices (i - 1) and (i + 1) and the original
sharp corner boundary. The parameter ¢ varies between 0 and 1 and, to
properly cluster the nodes toward the corner node, it was also a sinusoidal
function. The coordinate of the filleted corner node when ¢ < 0.5 can be
represented by the following formula:

% = P~ 0%+ cRiaal + (1= P)[(1 - 20)3i-, + 2c3] (6.33)

A similar expression is derived for when ¢ > 0.5. The amplitude of the
smoothness P can vary between 0 and 1. When P =0, the boundary elements E
will be on top of the original sharp corner boundary. When P = 1, the corner b
will be replaced by a straight line connecting nodes (i - 1) and (i + 1). A
value of P = 0.1 was found to be a good choice. This method makes the
outward normal vector, and subsequently the heat flux, continuous across k.
the corner. The filleting corner treatment has been tested on the previously 4
detailed corner problems. The fluxes predicted around the corners are
smoothed, and the accuracy has been improved in both the forward and

i-1 i+1

FIGURE 6.12 Fit of a curved line to a corner with three additional nodes.
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inverse problems. Its only disadvantage lies in the fact that the geometry
has been altered. Filleting of the geometric corners was found to be the most
effective corner treatment.

Conclusions for inverse heat conduction

The current state of observations indicate that the steady inverse heat con-
duction BEM is not subject to many of the shortcomings of the more common
unsteady IHCP techniques. The weighted residual statement takes the place
of the least sum of squares function. Since the BEM remains in an integral
form, with unknowns confined only to the boundaries, the BEM approach
is noniterative, and the resulting solution matrix is not as large as in other
formulations. Both of these properties prevent much of the magnification in
measurement errors. The BEM is robust and fast and it is applicable to
complex, multiply connected, two- and three-dimensional geometries. Tem-
perature and heat flux data are not required on those boundaries where such
measurements cannot be obtained. Instead, additional (overspecified) mea-
surement data of both temperatures and heat fluxes are required only on
some other, more accessible, boundaries orata finite number of points within
the domain. A truncated singular value decomposition (SVD) or Tikhonov
regularization of the highly ill-conditioned system matrix has shown to
produce meaningful results, with only a decrease in accuracy as the amount
of overspecified information decreases or when the distance from the over-
specified data gets larger.

Ill-posed boundary conditions in fluid flow

Integral methods are capable of solving ill-posed problems directly and
without iteration, least square fitting, or artificial smoothing (Martin and
Dulikravich, 1995). It will be shown that the boundary domain integral method
(BDIM) can predict the physically correct boundary conditions at an unspec-
ified flow exit boundary where no flow field information is provided (Martin
and Dulikravich, 1997). The BDIM was used to solve the energy equation in
an incompressible viscous fluid region where the velocity field is decoupled
from the ‘energy equation.

pcv(\—}-VT) = Ve (kVT)+®-pVe v (6.34)

where @ is the viscous dissipation with a constant viscosity coefficient. The
steady-state BDIE of this energy equation is

i * - * _l *
2nu(;vc)+_£q udll = Jr‘u gdr’ KIJ:V,,u udl'+

13 1 3
Eiv . Vu*udQ+¥OE[u*[(D—pV e V1dQ
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In this thermo-viscous system, the temperature field will not affect the
velocity field in incompressible flow situations and in the case where the
thermal buoyancy is negligible.

In the inverse incompressible fluid flow problem, one or more bound-
aries of the computational domain could be either unknown or underspec-
ified. Using the BDIM for an inverse incompressible fluid flow problem
without thermal buoyancy, it is not necessary to make an initial guess as to
the unknown temperature boundary conditions to solve the thermo-viscous
equation. The steady BDIM for the thermo-viscous energy equation uses the
fixed and known velocity field to noniteratively solve for the temperature
field in the fluid flow region, with one or more boundaries partially or
entirely unspecified. To compensate for the missing information, additional
boundary conditions of temperature and heat flux can be overspecified on
some other boundary. The BDIM will compute new temperatures on the
unspecified or underspecified boundary.

As an example, Poiseuille flow between two parallel stationary plates is
considered. Constant axial pressure difference drives the flow steadily from
one end of the passage to the other. Two parallel plates are separated by the
distance 2h. Each plate has a length of L, and both plates are kept at constant
temperature (T = T)) along their entire length. A fluid of constant viscosity

# and thermal conductivity k enters at the inlet with a uniform temperature
(T = T,). The temperature field at the exit at distance L is fully developed.
The fully developed velocity profile was taken from the analytic solution
(White, 1994),

v, = %%(1 _(,El)z) (6.36)

where dp/dx is the axial pressure gradient. The viscous dissipation function
has been ignored for this problem. The BDIM energy equation was solved
for the temperature field given a fully developed velocity profile and a
uniform entrance temperature.

dT (dzT zﬁ) (6.37)

Py = W gy

The exit boundary was considered to be fully developed; thus, a zero
normal temperature gradient was specified there. The fluid was discretized
with a 10 x 20 grid. Solution of the well-posed problem using the BDIM is
shown in Figure 6.13a.

Then, the boundary conditions at the inlet and exit of the same two
parallel plates have been changed from the well-known Poiseuille flow prob-
lem to produce an ill-posed problem. Nothing was specified at the inlet
boundary, while the exit was overspecified with both a temperature variation
and a zero normal temperature gradient taken from the analysis solution.
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FIGURE 6.13 Temperature field for the thermal entry problem with a fully developed
Poiseuille velocity profile and (a) well-posed thermal boundary conditions, and (b)
an unknown exit temperature boundary condition.

Results obtained for this inverse problem matched the analysis results very
closely (Figure 6.13b).

Ill-posed surface tractions and deformations in elastostatics

The objective of the steady-state inverse elastostatics problem is to deduce
displacements and tractions on any surfaces or surface elements where such
information is unknown. It is often difficult and even impossible to place
strain gauges and take measurements on a particular surface of a solid body
either due to its small size or geometric inaccessibility or because of the
severity of the environment on that surface. With the BEM inverse method,
these unknown elastostatic boundary values are deduced from additional
displacement and surface traction measurements made at a finite number
of points within the solid or on some other surfaces of the solid. The approach
is robust and fast since it is noniterative. For this inverse boundary value
technique to work, both deformations and tractions must be available and
applied simultaneously on at least a part of the object’s surface, called the
overspecified boundary.

The governing partial differential equations of elastostatics assume that
we have a linear relationship between the stress and the strain response. It
also neglects any changes in the orientation of the body due to displacements.
The two-dimensional state of stress at a point is defined using a second order
symmetric stress tensor, ¢;. These stress components must satisfy the fol-
lowing equilibrium equations throughout the interior of the solid body,
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(6.38)

where b, are the net body forces per unit volume necessary to keep the body
in equilibrium. Equilibrium on the boundary requires that p, = o,n;, where
n; is the unit outward normal vector to the surface, I'. The state of strain at
a point within the solid is denoted by the second-order symmetric strain
tensor, €. The strain-displacement relations for linear theory can be written
in indicial form as

1(du; oJu;
R kel Sd
g 2(ax,+ ax,.) (6.39)

where ; is the vector displacement field. The states of stress and strain for
an isotropic solid body are related through the stress-strain relations, also
known as Hooke’s Law, which depend on the material behavior.

ouy ou;, oJu;
o= RS, ek et B |
o, = AY; 7, + ”(ax,. + ax,») (6.40)

BEM solution to ill-posed elastostatic problems

The BEM has been found to be an effective solution strategy of the Navier-

Cauchy equation (Rizzo and Shippy, 1977). Neglecting, for now, the body o
forces and initial stresses, the boundary integral equation for elastostatics by
was used (Brebbia and Dominguez, 1989). To obtain a solution to this prob-
lem, the weighting function was assumed to satisfy an adjoint equation
represented by the response of the stress field to a unit load. This source
alters the stress field of the source as well as a displacement in the source
function u; in the k direction. The fundamental solution was found by using
the representation of the displacement in terms of the Galerkin vector.

Lo 96 1 6,
77 9x,0x, 2(1-0)dx,0x,

(6.41)

After the application of the virtual displacement theorem, the boundary

integral equation for static elasticity was formed (Brebbia and Dominguez,
1989).

ca(®)up(x) +J.p:kukdr = J‘u:kpkdr (6.42)
T r

The integration over each boundary was collected into a single boundary
integral. Due to the singularities existing in the displacement boundary
integral, the free term from the Dirac delta function was added with the
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effect of the Cauchy principal value. The diagonal free term, i is equal to
1/2 on a smooth boundary, 1 inside the domain, and 0 outside the domain.
Since this term was difficult to compute at corners, it was implicitly deter-
mined using the rigid body translation principle. That s, for all nodes having
a unit displacement, the tractions on the boundary were zero.

The boundary of the computational domain is then discretized with a
finite number of boundary elements. The displacements and tractions are
defined in terms of their nodal values and interpolation functions along each
boundary element. The whole set of boundary integral equations (BIE) can
be written in matrix form as,

[H]{U}=[G]{P} (6.43)

where the vectors {U} and {P} contain the nodal values of the displacement
and traction vectors. Each entry in the [H] and [G] matrices is developed by
properly summing the contributions from each numerically integrated
boundary element. One BIE exists for every node that defines the boundary.
The surface tractions are allowed to be discontinuous between each neigh-
boring boundary element to allow for proper corner treatment. In two-
dimensional problems, this set of integral equations will contain 2N,, equa-
tions and 6N, nodal values of displacements and tractions.

For a well-posed boundary value problem, at least one of the functions,
% or §, will be known at each boundary node so that the equation set will
be composed of a 2N,, x 2N, coefficient matrix.

[Al{X} = {F} (6.44)

Since there are two distinct traction vectors at corner nodes, the boundary
conditions applied there should include either two tractions or one displace-
ment and one traction. If only displacements are specified across a corner
node, the unknown tractions are averaged.

For an ill-posed boundary value problem, both # and 7 should be
enforced simultaneously at certain boundary nodes when nothing is
enforced on other boundary nodes. Straightforward algebraic manipulations
bring the known quantities to the right-hand side while the unknown nodal
displacements and tractions remain in a vector of unknowns {X} (Martin et
al., 1995). Additional equations may be added to the equation if there are
known displacements at locations within the solid. The system of linear
algebraic equations which, in general, does not have the same number of
rows and columns, can be inverted using the truncated singular value
decomposition (SVD) or Tikhonov regularization.

Rectangular tensile specimen
The accuracy of the BEM algorithm for elastostatics was tested on a rectan-
gular tensile specimen that was 5.0 cm long by 1.0 cm wide. The long sides
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of the specimen were discretized with five quadratic surface panels, each 1.0
cm in length, and the top and bottom sides had two panels, each 0.50 cm in
length. The top and bottom of the specimen were loaded with a uniform
tensile stress of p, =100 N/cm? The two vertical sides were specified to have
surface tractions of zero. The midpoints of the sidewalls were fixed with a
zero vertical displacement u, = 0. The shear modulus was specified to be G
=5.472 x 108N/cm?, and Poisson’s ratio was v = 0.345. The two-dimensional
elastostatics BEM code solved for the displacement and stress fields within
the specimen. The computed y-component of the displacement was uniform,
as expected, and had a linear variation from 0 to 0.00117 cm at the ends. The
analytic solution from strength of materials gives a maximum displacement
of 0.00125 c¢m, although this is only a linearized analytic solution and it is
not exact. The x-component of displacement varied linearly from 0 at the
center line to a maximum deformation of 8.0 x 10 cm at the vertical
sidewalls.

The accuracy of the inverse boundary condition code was verified for
the same tensile specimen. The boundary conditions were ill posed such that
both the displacement and traction vectors were known on the top, bottom,
and left sides of the rectangular plate. Elsewhere on the surface and on the
right vertical side, no boundary conditions were specified. The inverse elas-
tostatics BEM code predicted displacement and stress fields that were in
error by about 1.0% on average compared to the numerical results of the
previous analysis.

Pressurized circular cavity within an infinite domain

The capability of the BEM in handling infinitely large domains was demon-
strated for the case of a pressurized circular cavity. The wall of the cavity
was discretized with 12 quadratic panels. The internal pressure was specified
to be p, = 100 N/mm? and the radius of the cavity was 7, = 2.9745 mm. The
shear modulus was G = 9.5 x 10* N/mm?, and Poisson’s ratio was v = 0.1.
The x-displacements were fixed to 0 at two nodes located at 90° and 270°
measured from the x-axis. In addition, a single y-displacement was fixed to
zero at the boundary node located at 0°.

The well-posed stress analysis using the quadratic BEM predicted a
radial displacement vector field with a maximum deflection of 0.002 mm on
the boundary. The results of this analysis were then used for the boundary
conditions prescribed on the ill-posed problem. The second and fourth quad-
rant boundaries of the circular cavity were specified with both displacements
and tractions, while nothing was specified on the first and third quadrant
circular boundaries. The inverse BEM elastostatics code predicted a displace-
ment field that was in error by only about 0.03% compared to the previous
well-posed numerical analysis. Figures 6.14a and 6.14b show contour plots
of lines of constant stress 6, obtained with the forward (a) and inverse (b)
boundary value approach. The error between the computed stress field of
the inverse ill-posed problem, and the direct well-posed problem was on
average 0.5% (Martin et al., 1995).
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FIGURE 6.14 Contours of constant stresses G, from the well-posed (a) and ill-posed
(b) computations of the pressurized circular cavity within an infinite plate.

Circular cavity in an infinite plate

The inverse elastostatic BEM algorithm was then tested on an infinitely long
thick-walled pipe subject to an internal gauge pressure. The shear modulus
for this problem was G = 8.0 x 10* N/mm?, and Poisson’s ratio was v = 0.25.
The inner and outer radii of the pipe were 10 and 25 mm, respectively. The
inner and outer boundaries were discretized with 12 quadratic panels each.
The internal gauge pressure was specified to be p, = 100 N/ mm?, while the
outer boundary was specified with a zero surface traction.

The 2-D elastostatics analysis BEM algorithm computed the displace-
ment and stress fields within the circular annular domain. The numerical
results of this well-posed boundary value problem were then used as bound-
ary conditions applied to the following two ill-posed problems. First, the
displacement vectors computed on the inner circular boundary were applied
as overspecified boundary conditions, in addition to the surface tractions
already enforced there. At the same time, nothing was specified on the outer
circular boundary. The numerically computed radial displacement vector
field for this inverse boundary value problem was less than 1.0% in error
compared to the well-posed analysis. Values of o, 0, and o, that were
obtained with the inverse boundary value code averaged a much larger error,
about 3.0%, with some asymmetry in the stress field, when compared with
the analysis results.

Next, the displacement vectors computed on the outer circular boundary
by the well-posed numerical analysis were used to overspecify the outer
circular boundary instead of the inner boundary. At the same time, nothing
was specified on the inner circular boundary. The inner surface deformations
were in error by less than 0.1%, while the stresses averaged less than a 1.0%
error as compared to the analysis results. There was a discrepancy in the

error magnitudes between these two inverse problems. It seems that an
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overspecified outer boundary produces a more accurate solution than one
having an overspecified inner boundary. It was also shown (Martin and
Dulikravich, 1998) that, as the amount of the overspecified boundary area
or the resolution in the applied boundary conditions is decreased, the
amount of overspecified data also decreases, and thus the accuracy of the
inverse boundary value technique deteriorates.

Conclusions for inverse elastostatics

The BEM calculates deformations and tractions on surfaces where they are
unavailable and simultaneously computes the stress and deformation field
within the entire object. Inversely computed displacement and stress fields
within simple solids and on their boundaries were in excellent agreement
with the forward BEM analysis results and analytic solutions. The algorithm
is highly flexible in treating complex geometries and mixed elastostatic
boundary conditions. The accuracy and reliability of this technique deterio-
rates when the known surface conditions are only slightly overspecified and
far from the inaccessible surfaces. The method is applicable to two-dimen-
sional and three-dimensional multiply-connected configurations and could
be extended to involve simultaneous inverse evaluation of thermal and
elasticity boundary conditions.

Inverse detection of sources

The heat energy generated by the ongoing reactions in nuclear or toxic
chemical waste burial sites should be monitored without intrusive temper-
ature probes. Using only thermal sensors on the outer surfaces of these
containers and an inverse procedure, the analyst can determine the locations
and intensities of those heat-producing reactions. In the problem of electro-
cardiography, the distribution of electric potential dipoles within the heart
needs to be determined by monitoring the potential and flux on the surface
of the torso. These two situations are examples of practical inverse problems
where the goal is to deduce the sources of heat or potential given overspec-
ified information on the surface of the object or at a discrete number of
locations within the object. ’

The prediction of the distribution of heat sources from the measured
boundary temperatures and heat fluxes can be separated into two steps. The
first step is to formulate the well-posed (analysis) problem from the original
statement of Fourier’s heat conduction law with the application of the over-
specified boundary conditions to a system of algebraic equations. The second
step is the inversion of that algebraic expression. The inverse problem is, by
definition, ill posed. Therefore, the solution procedure must incorporate a
method that stabilizes the inversion.

Inverse detection of sources using the BEM

Several numerical methods have been used to solve the inverse Poisson
equation. One of them, the finite element method (FEM), is based on mini-
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mizing the energy function within a volume discretized into regularly
shaped elements. The potential or temperature is expressed as a sum of
piecewise continuous polynomial functions, called basis functions. One dis-
advantage of the FEM is that there can be a great deal of computational
overhead in assembling the grid and organizing the nodes. The finite differ-
ence method (FDM), which is equivalent to the FEM for a regular grid, is
not readily adapted to irregular geometries, but its simplicity decreases the
overhead in assembling the grid. The BEM has a major advantage in that it
involves fewer nodes than does the FEM or FDM.

Both the BEM and the FEM result in a set of simultaneous linear algebraic
equations for the unknown internal heat sources. The form of the BEM
solution set will contain as many equations as surface nodes plus interior
temperature measurements.

(H](U} = [G){Q} + [DI{B} (6.45)

The vector {B} contains the unknown nodal values of the source field.
For a purely inverse problem, the vectors {U} and {Q} will be known every-
where on the surface, and the solution matrix simply becomes the matrix
[D]. If the temperature field is known entirely in the domain, the matrix [D]
will be both square and well conditioned.

Detection of the heat generation inside an annular disk

To verify that the BEM is capable of finding the internal heat generation field
given overspecified boundary data, we used the annular disk geometry with
axisymmetric boundary conditions, u, = 4, = 0.0 and a constant heat source
8 = 1.0. The resulting analytical values for the nondimensional heat fluxes
on the outer and inner circular boundaries were g, = —0.3168 and g, = —0.4296,
respectively. Both outer and inner circular boundaries were overspecified
with the analytic nondimensional temperatures and heat fluxes. The internal
heat generation field was assumed to be unknown. Since the vectors {U} and
{Q} in the BEM solution matrix were known, they were multiplied by their
respective [H] and [G] matrices and assembled on the left-hand side. The
vector of unknown nodal heat sources {B} found by inverting the [D] matrix.

Each outer and inner circular boundary was discretized with 36 linear
isoparametric elements. The accuracy of the numerical inverse BEM solution
for the heat fluxes was determined by how the internal region was dis-
cretized. When the annular domain (disc area) was discretized with 36 quad-
rilateral cells circumferentially, having only one cell between the outer and
inner circular boundaries, the results were excellent. The heat generation
field was predicted with an average error less than 0.01%. Similar results
were found when the heat generation field was linearly varying in the radial
direction (Martin and Dulikravich, 1996).

But, when the domain was discretized with two or more radial rows of
quadrilateral cells, the results produced errors that were, at worst, in error
by about 30%. This is because the assembled BEM matrix had at least twice
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as many unknowns as it had equations. The results were significantly
improved whenever internal temperature measurements were included in
the analysis. For example, when the domain was discretized with two rows
of quadrilateral cells, a single row of nine known internal temperatures
produced results that averaged an error of less than 0.1%. Further results
have shown that, whenever the temperature field is entirely known every-
where in the domain, the resulting solution matrix [D] is both square and
well conditioned. After inversion of this matrix, the unknown heat source
vector {B} can be found with an accuracy comparable to the well-posed
(forward) problem, where {B} is known and the temperature field is the
objective of the computation.

Transient problems

Although the direct BEM has been effective in solving steady-state inverse
problems, the use of time-dependent fundamental solutions for the unsteady
problem is still under investigation. Inverse problems can result in a highly
ill-conditioned linear algebraic system for which SVD and Tikhonov regu-
larization even diverge. Stability of these algorithms seems to be propor-
tional to the magnitude of the heat diffusivity, since the condition number
of the matrix increases with decreasing thermal diffusivity. For example,
when thermal diffusivity (o = k/pC) is of the order 1, the recurring initial
condition BEM with domain discretization was able to noniteratively deter-
mine boundary conditions on surfaces where they were entirely unknown
by inverting a matrix with a condition number of six. For smaller values of
thermal diffusivity, the accuracy of this procedure rapidly deteriorated. If
this problem could be resolved, a powerful noniterative method for inverse
determination of boundary conditions could be developed that would not
require expensive heat flux probes. Instead, it could utilize inexpensive
temperature probes and time variation of their output.
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