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Abstract

A fast computer program has been developed that
can be used in two basic modes: (1} an analysis
mode for steady, transonic, potential flow through a
given planar cascade of airfoils and (2) a design
mode for converting a given cascade into a shockless
transonic cascade. The design mode can automati-
cally be followed by the analysis mode, thus con-
firming that the new flow field found is shock
free. The program generates its own multilevel
boundary-conforming computational grids and solves a
full-potential equation in a fully conservative
form. The shockless design is performed by imple-
menting Sobieczky's fictitious-gas elliptic con-
tinuation concept.

Nomenclature
a speed of sound (isentropic)
ax speed of sound (critical
afF speed of sound (fictitious)
Cp coefficient of aerodynamic drag force
(x direction)
CL coefficient of aerodynamic 1ift force

(y direction)

c airfoil chord length

D determinant: 3(x,y)/a(X,Y)

g y-distance between corresponding points
on neighboring airfoils

M local Mach number (M = q/a)

Mx critical Mach number (Mx = g/ax)

M1 Mach number at upstream infinity

Mo Mach number at downstream infinity

m coordinate direction orthogonal to

streamline
P constant in fictitious-gas relation
q magnitude of local velocity vector
S entropy
U, v contravariant components of velocity
vector in (X,Y) plane
u,v components of velocity vector in (x,y)
plane
y Cartesiar. coordinates in physical plane
Y Cartesian coordinates in computational
plane
free-stream angles at upstream and down-
stream infinity
8 cascade stagger angle
Y ratio of specific heats
8 angle between x axis and velocity vector
v Prandt1-Meyer function
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the Universities Space Research Association.
Member AIAA.

**Research Scientist. Member AlAA.

[ isentropic fluid density
Pk critical fluic density
pf fictitious fluid density
) velocity vector potential (J¢ = Q)
¥ stream function
Introduction

In the general case of transonic cascade flow,
supersonic regions terminate with shocks. These
shocks create vorticity and generate entropy in a
flow field that was initially irrotational and
homentropic. As a conseguence the aerodynamic drag
force sharply increases (wave drag) and the total
energy decreases, resulting in a rapid decay of the
aerodynamic efficiency of the cascade and an abrupt
increase in the aerodynamic noise level. In many
experiments it has been observed that, if the Mach
number just ahead of the foot of the shock wave is
larger than approximately 1.3, the boundary layer
starts to separate, leading to complex and poten-
tially dangerous unsteady flow phenomena and mech-
anical vibrations.

Choked flow represents yet another undesirable
phenomenon associated with transonic cascade flow.
Choking places an upper 1imit on the mass flow
through a given cascade. As a countermeasure the
airfoils in the cascade are often positioned farther
apart, decreasing cascade solidity. This results in
a decrease in flow turning angle through the cascade
and a drop in pressure rise across the cascade.

The main objective of this work is therefore to
eliminate the shocks (and possibly even the choked
f low) by slightly altering portions of the contour
of a given airfoil in the cascade.
Analysis

Governing Equations

This work is based on the fictitious-gas con-
cept of Sobieczkyl and the full-potential, steady,
transonic turbomachinery analysis codes of
Dulikravich.2 The analysis was derived exten-
sively in earlier works>,% and will be repeated
here in its concise form only.

In the case of a steady, two-dimensional,
irrotational isentropic flow of an inviscid, com-
pressible fluid the conservative form of the con-
tinuity equation is

(ou)

xt (ov)

=0 (1)

Equation (1) can also be expressed in its non-
conservative full-potential form
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or in its canonical operator formd,?

2, H 2, F 2,k 2,k
(D(l - M }ﬁ,ss -p(l -M )0'55) + o(? 6 - M 0,55) =0

(3)

Equation (3) represents a quasi-linear, second-
order partial differential equation of mixed
elliptic-hyperbolic type that accepts isentropic
discontinuities in its solution. These isentropic
shocks satisfy mass conservation

2
MagMep = Map (e, 0p) (4)
and differ from the Rankine-Hugoniot shocks
(Table I). Superscript H 1in equation (3) desig-
nates upstream differencing, and superscript E
designates central differencing to be used for the
evaluation of particular second derivatives. Solu-
tion of this steady-state equation is obtained as an
asymptotic solution to an artificially unsteady
equation

2
DQI - M)e + o,mm + ZEO’St + 2n0’mt + CO’t> =0
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(5)

for large times, where £, n, and ¢ are coeffi-
cients. This equation is solved by using an itera-
tive line overrelaxation where consecutive iteration
sweeps through the flow field are considered as
steps in an artificial time direction. The steady
part of the residual (or error) of equation (5) is
always evaluated by using equation (1) supplemented
by a directional numerical viscosity in ¢ continu-
ously fully conservative form, thus uniquely captur-
ing possible isentropic shocks.

For the purpose of a type-dependent,7
rotated5 finite difference evaluation of the
derivatives in equation {3) and a finite area8
evaluation of the first derivatives in equation (1),
the flow field and the governing equations are
transformed from the physical (x,y) plane (Fig. 1)
into a rectangular (X,Y) computational domain (Fig.
2) by using local isoparametric bilinear mapping
functions.

If the geometric transformation matrix is

(01" - (6)

then the contravariant velocity components in the
(X,Y) plane are

U -1
{ } m'l{u}= (0310 {°’X}
v v °,Y

(7)

Consequently the fully conservative form of the con-
tinuity equation (eq. (1)) becomes

i
(oUD *+ 5,) + (pVD + 5,) =0
b\° S Y ,v)

(8)

where the artificial viscosity terms 6y, 8y
represent principal parts of a truncation error of
equation (3).

The computational grid in the x,y plane is
generated by usin? a sequence of simple geometric
transformations9:10 incorporating a single
conformal-mapping function, elliptic polar coordi-
nates, and nonorthogonal coordinate stretching and
shearing. The uniform grid (Fig. 2) in the computa-
tional (X,Y) plane thus remaps back into the body-
fitted, quasi-orthogonal grid of figure 3 in the
physical (x,y) plane. The iterative solution pro-
cess of equation (3) is accelerated by using a four-
level, consecutive-grid refinement procedure.

All the flow parameters are nondimensionalized
with respect to the critical conditions denoted by
an asterisk so that the isentropic relations used
for the local fluid density and the speed of sound
are

1/(y-1)
) (9)
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Shock-Free Surface Design

Within the last decade several versions of an
indirect (hodograph) design approach based on
Garabedian's method of complex characteristics have
been published.12 The method proved to be a
powerful tool for the design of high-performance
airfoils and cascades, but handling the complicated
boundary and initial-value problems in a four-
dimensional computational space for practically
interesting design case:; requires a large amount of
experience. It is therefore desirable to develop
efficient direct - or nearly direct-design methods.

This task can
smooth, shock-free

be accomplished by prescribing a
pressure distribution along a
portion of a given airfoil contour in a cascade and
then determining a partially new airfoil shape con-
sistent with the prescribed surface flow condi-
tions. Because of the highly nonlinear character of
the transonic flow this design technique generally
does not provide an entirely shock-free flow field.
In order to completely eliminate all shocks (and the
associated wave drag) from the flow field, & number
of such designs must be performed, and an optimiza-
tion technique must be devised to search for a cas-
cade that maintains an entirely shock-free flow
field for a specific set of flow parameters.

Shock-Free Flow Field Design

Shock-free, or shockless, flow means that the
fluid decelerates from a supersonic speed to a sub~
sonic speed not discontinuously (shocked flow), but
smoothly over a finite distance (isentropic recom-
pression). This requires determination of a modi-



fied supersonic region that is longer but flatter
and thus can possibly unchoke a flow that was
originally choked. The sonic line bounding such a
supersonic region in an otherwise subsonic flow
field must not have inflection points if shocks are
to be avoided.

To eliminate the possibility of obtaining
shocks anywhere in the flow field, Sobieczky pro-
posedl and successfully applied13.14 the concept
of a fictitious-gas, shock-free design that corre-
sponds to an elliptic continuation3 from the sub-
sonic flow into local supersonic flow domains. This
design technigue uses isentropic relations for fluid
density (eg. (9)) and the sound speed (egq. (10))
only where the flow is locally subsonic. At every
point where the flow is locally supersonic, modified
(artificial) relations are used for the fluid den-
sity and the sound speed so that the governing equa-
tion remains elliptic throughout the flow field.
Therefore any conservative computer code capable of
solving a subcritical potential flow field can be
modified to include the fictitious gas concept and
then serve as a tool for determining the sonic line
shape.

It is important to point outl4 that the flow
field outside the supersonic bubble calculated from
the fictitious~gas reltations is already the correct
subsonic flow field. It is only the supersonic part
of the flow field that must be recomputed and from
this recalculation a new portion of the shock-free
airfoil surface determined. Lift and drag coeffi-
cients are also already design results, and they
will not be altered by the subsequent recomputation
of the local supersonic region. The sole purpose of
originally using an fictitious gas {modified density
and sound speed relation) is thus to determine a
shape of the sonic line that is compatible with an
entirely shock-free flow field.

In tnhe two-dimensional case of a cascade of
airfoils the values of potential ¢ and stream
function ¥ on the sonic line obtained from the
fictitious-gas calculation serve as the initial data
for an integration by the method of characteris-
tics. This integration is performed in a triangle
ERC of a rheograph (Fig. 4) plane {local flow angle
@ versus Prandtl-Meyer function wv(Mx). This
recalculation (now using isentropic gas relations
(eq. (9) and Eq. (10)) is performed only inside the
supersonic flow domain, The new section of the air-
foil surface is then determined from the arc V¢ = O,
which is interpolated from the solution in the char-
acteristic triangle ERC (Fig. 4). The new airfoil
is slightly flatter than the original shape: Isen-
tropic flow requires more space to pass than the
fictitious one.

The fictitious-gas technigue is not limited in
application only to two-dimensional planar problems
like a hodograph technique; it can be successfully
applied to both arbitrary two-dimensional and three-
dimensionall3,14 configurations.

Fictitious-Gas Relations

The fictitious-gas relation opf/p* 1is ap-
plied only in the regions where M > 1. An arbi-
trary analytic expression for pf/px 1S never-

theless subject to several constraints (Fig. 5). It
should satisfy the first-order continuity condition
on the sonic line in the flow field; that is,

~

[
aﬂ:(ri)‘ -1 (11)
when M =1, It is desirable to use a formula for
of/p* that includes a single (preferably con-
stant) input parameter P that makes the fictitious
gas more or less compressible in the supersonic
regions. Such a function must not have mipimum or
maximum values in the range of expected relative
local Mach numbers, because at such points the local
fictitious speed of sound af/ax is infinite.

This can be observed if the general continuity

criterion
Pe K d
—_—= - q
» exp 9;?—
a, f

is used to obtain the relation for af/ax.

After taking a logarithm and a derivative of both
sides of equation (12) one gets a general expression
for the speed of sound of the fictitious gas

(12)
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For the purpose of guaranteeing an entirely
shock-free flow field the values for opf/ox must
always be higher than the values required by ﬁhe
parabolicity condition; that is, (pf/ox) = Mg
(Fig. 5). The final condition for the relation
of /ox = F(Ma; P) is that it should be a very
simple function that will also produce a simple ex-
pression for af/ax.

(13)

In the present work we use the relation

1- YyT+M, -1

Pf
-—_— = +
Px ! 2P (14)
which gives
ag 1 - + . -
— = M {1 P ‘/I +apM, - 1)
a*
(15)
Results
Based on the preceding analysis, computer
codel5 DCAS2D has been developed and tested for
the following sequence of test cases. For the pur-

pose of illustrating basic features of the flow
through planar cascades of airfoils the flow around
an isolated NACA 0012 airfoil in free air and the
flow through a cascade of NACA 0012 airfoils were
analyzed. Airfoils in the cascade had zero stagger
angle (8 = 0°) and a gap-chord ratio of 3.6
(g/c=3.6). The free-stream angle was zero at both
upstream and downstream infinity. In the case of an
incompressible free stream (M} = 0.001) the result
obtained for the cascade did not differ from the
result obtained for an isolated airfoil.¢ But in



the case of a transonic flow (M} = 0.8) the cas-
cade effects (Fig. 6) were very significant even for
such widely spaced airfoils.

To demonstrate the applicability of shock-free,
fictitious-gas design to realistic lifting, stag-
gered cascades, we use a simple analytical shape
generator for geometry definition of the input air-
foils., Flexible geometry definition is most useful
for parametric studies of cascades. Here we use a
formula for blade section definition:

y = Ax + BxC + x1/2(1 - x)ll2 (D + Ex + Fx(1 - x))

(16)

with a proper choice of the parameters to control
leading- and trailing-edge radii, angles, and thick-
ness distribution.

Figure 7 shows a cascade of this family, with a
sonic Tine and the corresponding modification on the
upper surface, where shock-free redesign+? for
chosen operating conditions flattened the airfoil
contour. For this cascade the global flow and geo-
metric parameters were M} = 0.8, g/c = 0.85,

a] = 417, a2 =17°, and 8 = 27.3".

It is shown in Figure 8 that the airflow
through this cascade with geometry given by equation
(16) and a gap-chord ratio of 0.85 is not shock-free
but contains a very strong shock. For the same
global flow conditions the design mode of the code
DCAS2D is then used to obtain a new shape (Fig. 7).
This shape is different from the initial airfoil
only between 3 and 38 percent of chord on the upper
surface, resulting in a shock-free (Fig. 9) pressure
distribution. Then the analysis mode of DCA2SD is
used to verify that the design flow agreement is
excellent (Fig. 10).

This is the first of a series of examgles from
a parametric cascade airfoil shape study.1

Although the new airfoil losses shock-free proper-
ties at off-design conditions (Fig. 11}, the result-
ing shock is still considerably weaker than a shock
on the original airfoil. An optimum cascade for a
range of operating conditions can be obtained by
combining the fictitious-gas design concept with an
optimization technique.

As already mentioned, computer code DCAS2D is
capable of converting a choked, shocked cascade flow
field into an unchoked, shock-free flow field.

To illustrate this feature we selected a non-
staggered cascade of NACA 0018 airfoils having a
gap-chord ratio g/c of 1. Note that a simple one-
dimensional flow assumption predicts that

the flow through thic cascade will choke if

M1 > 0.577. Therefore we used the design mode

of the DCAS2D code with M) = 0.582 and the
fictitious-gas parameter P = 500. The resulting
flow field (Fig. 12) is unchoked and entirely shock
free.

A1l the calculations were performed without
taking into account viscous boundary layer effects.
For this purpose one may use a standard boundary
layer calculation procedure because shock - boundary
layer interaction effects do not exist in a shock-
free flow. The viscous/inviscid calculation can be
performed iteratively with a treatment of trailing-

edge vi 90“5 interaction, as has been demon-
strated!/ for isolated supercritical airfoils.

Concluding Remarks

An efficient and reliable computer program,
DCAS2D, has been developed and tested that automati-
cally performs partial redesign of a given airfoil
shape in the cascade for the purpose of eliminating
shock waves and the associated wave drag. The code
represents an application of already known and suc-
cessfully applied numerical techniques for transonic
flow analysis and the shock-free flow field design.
These techniques are based on the finite volume and
a fictitious-gas approach, respectively. A new for-
mula for the fictitious-gas relation, accompanied
with the related physical constraints, has been
suggested.

The computer code is entirely self-sufficient
in generating its own multilevel boundary-conforming
grids. The code can operate separately as a shock-
free cascade design code and also as a general tran-
sonic cascade analysis program with the capability
to accurately capture isentropic shocks.
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Figure 1. - Planar cascade of airfoils in phys-
ical (x,y) plane.

Figure 4. - Physical versus rhe-
ograph plane.
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Figure 2. - Periodic flow field in (X, Y) computational plane,
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Figure 5. - Sonic line shapes for vari-
ous density relations,

Figure 3. - Computational grid in physical (x,y) plane.
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Figure 6. - Transonic cascade effects, (Airfoil,
NACA 0012 Myp=My=038 glc- 3.6 up = a =
B=P)

Figure 7. - An original cascade of airfoils
with superimposed shock-free redesigned
cascade and the corresponding shock-free
sonic line shape.

Figure 8. - Analysis of the original
cascade (M) = 0.8; g/c = 0.85;
oy =41% dy = 17°%; B = 27.39),

Figure 9. - Shock-free redesign
of a given cascade {with P =25
in egs, (14) and (15)).



Figure 10. - Analytical verifi- T
cation of a shock-free design.

L Figure 12. - Unchoking a choked

cascade flow (airfoil, NACA

T 0018; My =M, = 0.582; aj -
ay=p=0% g%c =1; P =500)

Figure 11. - Analysis of shock-
free airfoil at an off-design
condition (M; = 0,82).
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