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Optimization of Three-Dimensional Computational Grids

Richard Carcaillet,* Stephen R. Kennon,* and George S. Dulikravicht
The University of Texas at Austin, Austin, Texas

A method for generating and optimizing arbitrary three-dimensional boundary-conforming computational
grids has been developed. The smoothness and local orthogonality of the grid are maximized using a fast

iterative procedure, and provision is made for clusterin

g the optimized grid in selected regions. An opimal grid

can be obtained iteratively, irrespective of the method used to generate the initial grid. Unacceptable grids and
even singular grids (i.e., grids containing regions of overlap) can be made useful for computation using this
method. Application of the method to several test cases shows that grids containing regions of overlap are
typically untangled in 2-5 iterations and that the conjugate gradient optimization procedure converges to an op-
timized grid within 25 iterations. Taking advantage of the original properties of this method, a new concept for
generating optimal three-dimensional computational grids is proposed. It consists in optimizing a first guess of
the desired grid, using an imperfect grid generated by a simple, inexpensive method as input.

1. Introduction

T HE quality of the computational grid is essential to the
accurate and stable numerical analysis of engineering
flow problems. On the one hand, the grid should be smooth,
that is, it should exhibit reasonable change in spacing in each
of the curvilinear coordinate directions, so that the diffu-
sionlike truncation error introduced by a nonuniform grid! is
limited. On the other hand, orthogonality of grid lines should
be enforced at the boundaries of the grid to allow accurate im-
plementation of boundary conditions.?
Methods explicitly using these desirable qualities to generate
a grid have been developed, at least conceptually.?® The
method of Brackbill and Saltzman has shown some
remarkable results and has motivated the present study. In our
work, an alternative, more heuristic formulation was adopted
and successfully implemented in two dimensions using a
nonlinear programming approach.” The method, which con-
sists in iteratively optimizing a given arbitrary computational
grid, has been extended to three dimensions and further re-
fined. Satisfactory three-dimensional single grids about
typical aircraft configurations are very difficult to achieve,
since the slope discontinuities of the surface grid will result in
highly skewed or even overlapped cells near the surface in
most of the existing three-dimensional grid generation tech-
niques. In some simple cases, it is possible to connect corre-
sponding points of individual two-dimensional grids generated
on successive planes orcurved surfacest {0 Gbrain a “‘stacked”’
grid. For more complex configurations. the only practical
alternative to a single grid consists in generating contiguous
subgrids on simpler three-dimensional domains® patched
together to form the complete grid. This method. however, is
quite complex and may create additional grid quality problems
at the boundaries between the patches.
The present paper describes a method that will optimize a
given arbitrary three-dimensional grid with respect to
smoothness and local orthogonality while allowing local,
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directional clustering of the resulting grid. The optimization
technique may be applied in this fashion, as a postprocessor
capable of improving an unacceptable grid to the point at
which it is useful for flow computation. But its potential is
best exploited by using it as an efficient grid generator. In this
case, only a rough first guess of the desired grid is needed as
input. The resulting grid will possess an optimal combination
of smoothness and local orthogonality for the given con-
figuration. A detailed example of application of this original
grid generation concept is given in this paper.

II. Analysis
Outline

The approach taken is one of unconstrained minimization
of an appropriate (nonlinear) objective function. The latter is
defined as a composite weighted measure of departure from
smoothness and orthogonality over the entire grid. The
minimization technique is a first-order iterative conjugate gra-
dient method. Each iteration yields corrections dx, dv, dz to
the physical coordinates x, y, z of each interior grid point such
that the objective function decreases. The procedure is halted
when corrections do not bring any further reduction in the ob-
Jective function. Additional techniques to implement or-
thogonality at the boundaries and local, directional grid
clustering complete the numerical scheme.

The Objective Function

The objective function rests on an alternative, heurisiic for-
mulation of the variational grid generation equations of
Brackbill and Salizman.® Assuming a computational grid
given by the set of its grid point coordinates

Feor gl Isisl lsj<) 1<k<K (1)

a local grid optimization problem is considered at each interior
grid point P(i,j, k) that is the center of a master cell consisting
of the eight elementary neighboring grid cells that share
P(i,j,k) (Fig. 1). The grid points are assumed to be connected
by straight line segments, and six position vectors rl,...,r6 are
defined that connect P(i,j,k) to its immediate neighbors.

Qualitatively, the desirable properties of the master cell are
stated as:

1) Smoothness: The master cell is smooth if the change in
cell volume from one of its grid cells to the next is minimal, in
all three directions /= const, j=const, & = const.

2) Orthogonality: The master cell is orthogonal if the three
grid lines /= const, j= const, k = const intersect at P(ij,k) at
right angles.
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Quantitative smoothness and orthogonality measures are
then formulated as follows, choosing for the former the most
computationally efficient of several possible expressions.!©
Note that both measures are always positive and that they are
minimal for a Cartesian master cell:

Smoothness measure:

SMye =k brth2 + .+« r6l? (2a)
. Orthogonality measure:
ORT = (r1-r2)* + ...+ (r6-rd)* (12 terms) (2b)

The scalars « («= 1) in Eq. (2a) can be seen as variable stiff-
ness coefficients, in clear analogy with a system where grid
points are connected to their immediate neighbors by tension
springs. According to this analogy, minimizing the departure
from smoothness SM of the master cell corresponds to
minimizing the energy of the spring system. An immediate
useful consequence is that local clustering of the desired grid is
easily achieved, with respect to selected lines, surfaces, or
three-dimensional regions. It suffices to specify functional
relationships for the stiffness coefficients in the appropriate
curvilinear direction(s).'® For example, a relationship of the
general form k=« (k) + 1, x(k) =0 will result in the clustering
of grid surfaces k& = const according to the variations of « (k).

The global objective function is then obtained by taking a
weighted sum of the local smoothness and orthogonality
measures over all the interior grid points. It is written as

F=Y. Y Y (aORT 4 +(1-a)SM] 3)

where o (0<a =< 1) is a scalar weight parameter that enables a
tradeoff between grid smoothness and local orthogonality to
be achieved in the optimization procedure. Minimizing F will
produce a grid that is optimally smooth («=0), or optimally
locally orthogonal (a=1), or that possesses a desired com-
bination thereof determined by the value of «. Note that in
Eq. (3), the range of the summations restrict the optimization
procedure to interior grid points only. Points at the grid
boundaries are left fixed, or allowed to ‘“float’’ on the bound-
ary surfaces. The latter option will be considered in a separate
section.

The optimization algorithm: The problem of minimizing F
is reformulated as an unconstrained nonlinear optimization
problem for the function of N variables

F=F(V) (4a)
where

V=1{ (oD’ (4b)

is the vector of length N=3x(I/xJxK) containing the
physical grid point coordinates of all the grid points in natural
ordering. ¥ represents a point in the design space of all the
possible grid for the given boundary configuration. [teratively
minimizing F yields V* (the optimal grid) such that

I vF (V9 <e %)

where ¢ is the specified convergence criterion.

The Fletcher-Reeves conjugate gradient method'!*? is
chosen to solve the problem defined by Eqs. (4). This iterative
search procedure possesses favorable convergence properties
due to the use of information from the previous iterations or
line searches. A true quadratic form will be minimized using
this algorithm in at most N iterations. Each iteration consists
of a line search in the direction defined by

Vo= —=VF(V°)

V= —-VF(V")+8,6V! (6a)
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where
teF(y ik

= 6b
TN F(VYTHYI (60)
F is minimized in this direction, which reduces the M-
dimensional problem to a one-dimensional problem in the
variable w” that can be stated as

Minimize ¢ (w") = F (V" + 0"8 V™) )

The minimization of ¥" or line searching is usually the
costliest portion of such an algorithm. However, it is seen by
inspection of Eqs. (2) that the grid quality measures are simple
polynomials in the physical grid point coordinates. The
smoothness measure contributes second-order and the or-
thogonality measure fourth-order terms to the objective func-
tion. It follows by substitution of Eq. (6a) into Eq. (7) that 4~
is a fourth-order polynomial in «". Hence, the line searching
defined by Eq. (7) is exact, reducing to finding and testing the

three roots of
oy )n
Bl A R (8)
( Jw

and selecting the root w” that minimizes ¢”. The grid point
coordinates are then updated according to

R ZPUF § 2 9)

This completes a short description of the algorithm
employed. See Ref. 10 for more details and for considerations
on the scaling of the search direction vector 6V and on con-
vergence toward the true minimum of F or toward a relative
minimium (that represents a suboptimal grid). Treatment of
the boundaries orthogonality at the boundaries is easily en-
forced for plane boundaries or boundaries that exhibit cylin-

Fig. 1 Master cell.

Table I Influence of « on the untangling procedure

Optimization Number of overlapped master cells
iteration a=0 a=1
no. (smoothness) a=0.5 (orthogonality)
0 271 271 271
1 7 19 108
2 0 4 36
3 0 0 17
4 0 0 9
s 0 0 3
6 0 0 0
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Fig. 3 Grid after one iteration (19 overlapped cells, above) and after
three iterations (no overlapped cells, below).

drical symmetry. For general three-dimensional boundary sur-
faces, explicit reference to a mapping between the physical
plane (x, y, z) and the computational plane (¢, 5, ) can be
made, using, say, lLagrange interpolation for three-
dimensional surfaces. Two techniques have been devised. The
first technique is capable of treating complex boundary in-
tersection configurations'® and consists in including boundary
points in the optimization process. This involves generating
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Fig. 4 Grid after 20 iterations (nearly uniform grid, above) and after
50 iterations (Cartesian grid is recovered, below).

Fig. 5 Inner and outer grid surfaces for the ‘‘Aquila’ configuration.
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Fig. 6 Initial three-dimensional grid showing unacceptabie ir-
regularities; one of the quasi-meridional grid surfaces {/ = cs¢) and the
second body-conforming grid surface (k = cst) are shown.
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Fig. 7 Same grid surfaces for the optimized grid obtained after 20
iterations for a =0; points on the outflow boundary and on the ver-
tical plane of symmetry are kept fixed.
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Fig. 8 Same grid surfaces for the optimized grid obtained after 20
iterations for o = ¢ with orthogonality enforced at the cutflow bound-
ary and at the vertical plape of symmetry.

so-called imaginary points by reflection or extrapolation of
the first boundary-conforming grid surface. The second
technique, applicable to simple configurations, consists in a
passive updating of boundary points that identifies them at
each iteration with the Euclidian projection on the boundary
surface of the corresponding grid points on the first boundary-
conforming grid surface.!°

II1. Results
The input to the computer code that was developed to im-
plement the grid optimization method is made of: 1) the set of
the physical coordinates, normalized to unity, defining the ini-
tial grid; 2) the value of the scalar weight parameter o; (3) the
convergence criterion ¢; and 4) the value of some scalar
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Fig. 9 For the same optimized grid: vertical plane of symmetry and
first body-conforming grid surface, showing high degree of
smoothness.

clustering parameter that controls the variations of the func-
tionals, say, x(k). In all the test cases investigated, the op-
timization procedure was shown to converge fast toward the
optimal grid (within fifty iterations for e = 10-4).

Randomized Cube Example

Given a Cartesian grid consisting of 10 x 10 x 10 cubic cells
forming the unit cube, random perturbations are added to the
coordinates of each interior grid point, resulting in the severely
overlapped grid shown in Fig. 2. Note that some grid points
even lie outside the cube. This randomized grid is optimized
for a=0.5. The optimization procedure easily untangles the
271 overlapped cells detected in the input grid in only two
iterations. The grid is nearly uniform after 20 iterations, and
the original Cartesian grid is retrieved in 50 iterations. Figures
3 and 4 illustrate the evolution of the grid in the course of
optimization.

Tests with « =0 and o = | demonstrate the influence of « on
the untangling process, as documented in Table 1. The
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Fig. 10 Convergence history for the optimization procedure of Figs.
8 and 9 (SMG =global smeothness measure, ORTG =global or-
thogonality measure).

number of remaining overlapped master cells is given for the
first six iterations. Obviously, optimizing the grid in terms of
smoothness only (o = 0) allows a much faster untangling of the
initial singular grid.

This example proves that the method is able to treat an ex-
tremely poor initial grid effectively and that it converges
rapidly toward the optimal grid, which in this case was known.
The resulting grid is the true minimizer of the global objective
function.

Optimal Grid Generation Example

The ability of the method to untangle overlapped grids
allows the task of generating a single three-dimensional grid
about complex geometries to be recast in the following form:

1) Generate an imperfect initial grid about the configuration
of interest, using a fast, simple technique.

2) Optimize this first guess in terms of smoothness and/or
local orthogonality, implementing clustering where desirable.

In this example, an existing fast algebraic grid generation
technique!® is employed to generate a three-dimensional grid
comprising 80 x 20 x 10 cells between two surface grids, each
having the same number of cells. The inner surface grid'
simulates the Lockheed RPV ‘‘Aquila,”’ the outer surface is
represented by a hemispherical shape (Fig. 5). Notice the bulge
beneath the fuselage, representing a camera pod, and the
vortex sheet simulated behind the wing.

Figure 6 shows two surfaces from the initial grid, evidencing
unacceptable irregularities. This grid is actually completely
useless since 67 overlapped master cells were detected in it.
Notice in particular the obvious problems near the bulge.
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Fig. 11 Optimized grid obtained after 20 iterations for a = 0.4, with
clustering of the body-conforming grid surfaces toward the body.

After 20 iterations of the optimization procedure for =0,
the grid illustrated in Fig. 7 is obtained, for which boundary
points were left fixed. The improvement in smoothness is
significant, the grid having been untangled in 4 iterations. Im-
plementing orthogonality at the outflow boundary and at the
vertical plane of symmetry in the same optimization procedure
yields the grid shown in Fig. 8. The grid lines are now leaving
these boundaries orthogonally. The same optimized grid is
illustrated in Fig. 9, which emphasizes the degree of smooth-
ness achieved. Increasing the number of iterations does not
bring significant reduction of the objective function, as
demonstrated in Fig. 10, where the global smoothness and or-
thogonality measures, defined as the sum over the master cells
of Egs. (2), are plotted against the number of iterations. The
grid is essentially optimized after 20 iterations. In spite of a
nearly constant smoothness, after 30 iterations one singular
master cell appears at the nose tip. The simple smoothness
measure with uniform stiffness constants fails here, since the
first master cell upstream of the nose tip can only reach
equilibrium by becoming singular. A more accurate
smoothness measure based on differences of exact cell
volumes would resolve this difficulty. Alternatively, choosing
stiffer springs in this region suppresses the problem. Figure 11
shows the grid obtained after 20 iterations of the optimization
procedure for a=0.4 and for stiffness constants taken as

k(D=x()=1x(k)=K-k (10)

where k = K at the outer boundary and k=1 at the wing/body
surface. It is seen that the clustering is satisfying, allowing an
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Fig. 12 For the same optimized grid: First body-conforming grid
surface, showing high degree of smoothness (compare to Fig. 9).
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Fig. 13 Convergence history for the optimization procedure of Figs.
11 and 12 (SMG=global weighted smoothness measure, ORTG
= global orthogonality measure).

accurate implementation of boundary conditions. The cluster-
ing effect is evident when comparing Fig. 9to Fig. 12, where the
same first body-conforming grid surface is shown. Finally, the
convergence history presented in Fig. 13 shows that en-
forcing local grid clustering results in a smaller reduction of the
orthogonality measure, although the latter was explicitly con-
sidered here. Numerous test cases have shown that best results
are obtained for o <0.5, in terms of grid quality improvement
as well as of convergence rate. Notice also how the stiffer
springs effectively prevent large displacements of the grid
points in the initial stage of the optimization procedure (Fig. 9).

In this last test case, which represents a typical application
of the optimal three-dimensional grid generation concept, the
optimal grid was obtained in 20 iterations, each iteration pro-
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cessing the 18711 grid points in 15 s of CPU time. The initial
grid was generated in 12 s of CPU time. Both figures are for a
Harris 800-11 computer.

IV. Conclusions

The method presented in this paper has been shown to im-
prove the quality of poor three-dimensional grids signifi-
cantly. It is not tied to any particular grid generation method
and allows an optimal grid to be obtained, even when the initial
grid contains overlapped regions. This makes the grid optimiza-
tion method an efficient, widely applicable tool capable of
alleviating some of the difficulties inherent in three-
dimensional grid generation. It can be easily extended to treat
embedded or patched grids.!* The development of optimal
solution-adaptive three-dimensional grids is foreseen, based on
recent research results in the two-dimensional case.'®
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