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ABSTRACT

A method is described for a posteriori opti-
mization of computational grids where grid non-or-
thogonality and grid overlap are minimized using
an iterative optimization procedure. Desirable
properties such as smoothness are at the same time
maximized using the described technique. In this
sense an optimal computaticnal grid can be
obtained, irrespective of the method used to gen-
erate the original grid. Thus, the user may gen-
erate a computational grid with whatever method he
chooses. Then, if the grid is unacceptable for
computations, it can be optimized in an
a posteriori fashion. If the original grid has
regions of overlap (non-positive Jacobian), the
described method is capable of ‘unravelling' the
grid and making it useful for computations. Grid
points on the boundary of the domain remain fixed,
thereby allowing the correct resolution of regions
of interest. The iterative optimization procedure
is extremely fast due to the use of exact line
searching and a conjugate direction method. The
method can be applied to the optimization of two-
or three-dimensional grids. Example grid opti-
mization <cases are shown for two-dimensional
grids. The formulation of the method for

three-dimensional grids is also given.

*Graduate Research Assistant, Student Member AIAA
**Assistant Professor, Member AIAA

Copyright Z- American Institute of Aerorsutics and
Astronautics, Inc., 1985, All rights reserved.

Introduction

There has been a great deal of ihterest in the
past few years in development of%computationa]
grid generation techniques® for use:in discretiz-
ing complex regions for numerical solution of par-
tial differential equations. The grid generation
methods in common use have achieved a high degree
of sophistication and ease of use. Nevertheless,
the authors of this paper perceived a need for a
method that would improve the qua]ity of a given
computational grid. In many cases a particular
grid generation method works exceptiionally well,
but only for a small sub-class of preblems. Howev-
er, for more complex configurations, these methods

do not always produce grids that afre acceptable

for computations. Grid quality deterioration is
especially apparent in three-dimensi¢na] grid gen-
eration methods and when two—dimensi#na1 grids are
combined to form a three—dimensio&al grid. In

addition to grid quality prob1ems,imany methods

suffer from computational inefficien¢y,

A possible alternative to pptimize the
cost-quality trade-off is to generake a non-per-
fect grid using an inexpensive and lsimple method
and then to improve the grid in ania posteriori
fashion. If the original grid is aLceptab]e for

computations then it can be directly used, but if

the grid is not acceptable it should not be thrown



away, and the particular grid generation program
should not necessarily be abandoned. Rather, we
can retain the grid as an initial guess for a grid
improvement or optimization method. An efficient

method for grid optimization is described in this

paper.
ANALYSIS

The formulation of the grid optimization meth-
od will be illustrated as a two-dimensional grid
optimization problem. The details of the method

for the three-dimensional case are given in the

Appendix.

Assume that we are given a computational grid
which we wish to optimize. This initial grid is
defined by its grid coordinates,
(505

objective is to determine an iterative procedure

point

» Y5 j) where 1 < disp and 1 <j <q. The

that calculates corrections to X5 and i3 con-

sistent with the goal of optimizing the grid.

An optimal grid can be defined as a grid
posessing maximal local orthogonality and smocth-
ness. An orthogonal conformal grid is everywhere
orthogonal and entirely smooth with respect to the
Laplace operator. Llocally orthogonal grids can be
generated efficiently using & variety of methods
based on conformal mappings.® ® * However, for
conformal grids 2}l grid points on all boundaries
cannot be arbitrarily chosen by the user--some
boundary points must be allowed to float. This
can be a severe restriction in many cases. When it
i< desirable to specify and fix the points on the
boundaries, many existing non-orthogonal grid gen-
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eration methods can be used.® However, the

specified distribution of boundary points is not

always consistent with a smooth and maximally
orthogonal grid. In addition, prépagation of
clustered regions into the rest of tHe domain can
also be a problem.” Another problem with con-
formal grid generation techniques is {he non-exis-

tence of general three-dimensional cdnformal map-

pings.

We will discuss the formulationi of the grid
optimizaton method by first looking at similari-
ties with the Saltzman-Brackbill® variational
grid generation method. In the varidtional meth-
od, two functionals are introduced that provide
measures of grid smoothness

= 2 1y2
Lo = 17V, 2D + (v, ni)*dxdy (1
and grid orthogonality
= ] 3
I !f[(nyi) (nyn)]J dxdy (2)

where
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J = Exny - nxiy

(x,y) - physical coordinates

(£,n) - computational coordinates
The roles of dependent {£,n) and independent (x,y)

coordinates are interchanged and the Euler-La-

grange egquations are applied to the total func-~
tional
I=1(g,m) = x I+ I | (3

where XS and xo are scalar weights fo} the smooth-
ness and orthogonality measures respeftively. The
result of applying the Euler-Lagrangeiequations is
a non-linear system of «coupled :differential
equations of second order in the (AH,y) physical
coordinates that are solved by finite difference

discretization. The transformed ecuations become

T 2 2 2 2 ;
Ig = Jolxghex Poy P4y 2] J dedn (4)
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_ _ 1
where J = (xgyn xnyg)




In theory, the same solutions of the Euler-La-
grange system can be achieved by direct discreti-
zation and minimization of the functional I. In
this case, the derivatives can be replaced with
finite differences and the integrals with simple
summations over the grid points. However, after
careful examination of eqs. 4 and 5 one can see
that only first partial derivatives of x and y
appear in the functional I. Therefore, a central
finite difference discretizaton® of I of any order

cenrtered at the grid point (xi WY j) becomes

J
independent of the values of Xi,j and yi,j' This
leads to strong decoupling problems in the sol-
ution procedure which do not occur if the
Euler-Lagrange system is solved since second order

partial derivatives appear in the system.

The decoupling problem leads us to an alterna-
tive, more direct formulation of grid quality mea-
sures that are directly dependent on the central

grid point (xi WYy .). We define the smoothness

J J

measure qualitatively by stating that a smooth
grid has minimal change in grid cell area from one
grid cell to the next, in both the & and
directions. Similarly, a maximally orthogonal
grid is one in which the grid lines of the families
E=constant and n=constant intersect at right

angles.

Grid Quality Measures

Consider the local problem of grid optimiza-
tion for a master cell consisting of four elemen-

tary cells numbered 1,2,3 and 4

Assume that the grid points are connected with

straight line segments defined by
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The quantitative measure of local grid smoothness

r

is given by
= - 2 - 2 - 2 o
%5 5 (V7V) i+ (VprVg) s (Va-V )+ (V -V ® (7)
where Vk is a measure of the area of khe k'th ele-

mentary cell, e.g.
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The Tocal measure of grid orthogonality is given
by
- 4
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Clearly both the smoothness and orthogonality mea-

sures  depend on the central (grid point

(x; 5Y5 j)' We now define the total cost func-
tion F by
= P 40 - 3
F = 21=1 Zj:l [upi“j + (1 u)oi,j] (10)

0cacx<1l
Minimizing F will produce a grid that;is optimally
smooth (e=0) or orthogonal (a=1). Eetting a to
intermediate values between 0 and 1 pives differ-
ent weights to the smoothness or orthogona?ity of

the grid. i

Iterative Optimization Procedure

|

To minimize F we use the fo]]ow*ng iterative

optimization procedure. First, let us restate the



problem in terms of the vector z=(x,y) of length
2pg=2N that contains the x and y coordinates of
the grid points in a natural ordering. Thus we
must find the value z=z* such that F(z*) is a mini-
mum. We use the Fletcher-Reeves conjugate direc-

tion procedure!?

52(0)= —vr(z(0))
WHILE [VF| > ¢ DO
(1) (), () () (11)

520 = gr(a(My 4 5(M,(n-1)
B(n) - IVF(N)IZ / iVF(n-l)!z

The factor w in eq. 11 is the so-called
line-search parameter and it is given by
w = arg [min v(w)] (12)
Y

where the scalar function v(w) is given by

w() = FD)y 2 p (M) o s, () (13)
Clearly, w is found from a one~dimensional minimi-
zation of the scalar function ¢(w). The determi-
nation of w is usually the most costly portion of
each step of an iterative optimization procedure
since it involves many evaluations of the cost
function F(z). However, the parameter w can be
determined with minimal effort using concepts
based on the Residual

Non-Linear Minimal

Method!! 2 for accelerating the iterative sol-

ution of differentijal systems.

Note that the crthogonslity and smocthness

measures are composed of simple polynomial
expressions of the x and y grid point coordinates.
Therefore, w(w) is a fourth degree polynomial
function in terms of w. This follows by simple
substitution of eq. 11 into eq. 12. To determine
the vaiue of w that minimizes w(w) we simply find

and test the three roots of the cubic polynomial

obtained from

9y
=0 : (13)

The root that produces the minimum in ¥ is used in
eq. 11 to update the grid point coondinates. The
iterative optimization procedure i$ halted when

{VFl is less than a specified tolerante.

RESULTS

A computer program was developed to imple-
ment the grid optimization procedure for two-di-
mensional O-type grids. Note that all types of

grids can be optimized in like manner,;

The first test case was a non-staggered cas-
cade of NACA 0012 airfoils at a gap-tp-chord ratio
of 1.0. The init{al grid was geneﬁated using a
complex-valued spline method® ! and is shown in
fig. 1. The grid was then optimized using the
weighting factor o=0.5 with the result shown in
fig. 2. One can see that the method is able to
smooth this geometrically periodic grid and make
it more orthogonal. This particular brid was spe-
cified to have 5 grid points at the;upstream and
downstream boundaries. We also app]ﬂed the opti-
mization procedure for a NACA 0012 kascade grid
that had only 3 points at these boundaries
(fig. 3). This grid has very 1argé changes in
cell areas near these boundaries. The grid was
optimized and the result is shown in fig. 4. The
optimized grid is smooth and useful for computa-
tions.

Another cascade example is showh in figs. 5
and 6, in this case a turbine ca;cade13 at a
gap-to-chord ratio of 1.0. The optim{zation meth-
od has greatly improved the grid, eEpecia]]y in

regions where the original grid was hﬂgh]y non-or-



thogonal.

To demonstrate the ability of the method to
'unravel' grids that contain overlap we optimized
a grid for a space-shuttle cross-section® that was
completely useless (fig. 7). The result of apply-
ing 25 fjterations of the optimization method is
shown in fig. 8. A1l regions of overlap have been

‘unravelled' and the resulting grid is usable.

As a final example we show a uniform rectangu-
lar grid on which a uniform random error has been
intentionally introduced (fig. 9a). The resulting

iterative optimization sequence 1is shown in

figs. 9b-9d. The overlapping grid was easily
unravelled to produce the original uniform grid.
These two-dimensional examples show that the meth-
od gives

an efficient technique for improving

non-optimal grids.

FUTURE RESEARCH

The most promising applications for the method
are in the areas of three-dimepsiona] grid opti-
mization and flow adaptive grid generation. The
three-dimensional problem can be solved with a
direct extension of the two-dimensional analysis
given in this paper. The three-dimensional grid

optimization method is particularly suitable for

grids that are based on stackings of two-dimen-
sional grids.? * “ In this case, the grid is
probably fairly orthogonal within the stacking

planes, but is usually quite non-orthogonal n the

third direction. Nevertheless, the grid can be
made as locally orthogonal as possible by applying
the described grid optimization method.

Flow adaptive grid generation methods can

[8a)

also be formulated from the ideas presented in
this paper. In this case, we would add an addi-
tional functional to I(Z,n), as done by Saltzman
and Brackbill,® that is a weighted volume measure
of a quantity that we wish the grid to adapt to
(such as a pressure gradient). This functional
would be minimized along with the grid quality
measures. Thus, grid points would automatically
cluster in regions of the flow domain requiring
resolution while the grid would maintain a high

degree of quality.

APPENDIX

This section presents the details of the meth-

od in three-dimensions.

Smocthness measure:

%5k T
(V¥R )T+ (VpmVg) 2o (VymV ) 2+ (Vv )7+
(Vg Vg *+(Vg=V7) 2+ (V5 V) +(VUg-Vg )+
(V)Vg) 2+ (Vg ) B (VVo ) P+ (Y,=Vg)® (A1)
where the Vk are appropriate volume measures for
the eight elementary ceils composing the master
three-dimensicnal cell. For examp]e;

VDT ke ek K T e )

(A.2)
Crthogorality measure:
Piik ®
. . 24(r. . . 2
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(:i+],j,k':i,j,k-1)2+(;i,j-l,k'ri,$,k-1)2 *
(ri-l,j,k':i,j,k-l)z+(:i,j+1,k':i,U,k-l)z *
(:1+1.j,k';i,j,k+1)2*(;i,j-l,k':i,;,k+1)z *
(zﬁ-l,j,k':i,j.k+1)2+(:i‘j+1,k':i,j,k+l)2 (A.3)



Note that the smoothness measure °',',k will pro-
duce a sixth order polynomial contribution to y(w)
(as opposed to fourth order in two-dimensions),
while the orthogonality measure pi,j,k
fourth order in w. Thus, w(w) will be sixth order

remains

and we will have to find the five roots of

3 (A.4)
to perform the line searching part of the itera-

tive optimization procedure.
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