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ABSTRACT

Reasons for certain inaccuracies in
of existing computer programs that
calculzte transonic full potential flows
exposed. Problems of post-shock oscillations,
non-unique shock strengths and their locations,
diverging solutions of choked nozzle flows and flows
about sharp leading edges ere shown to be related to
widely zccepted oversimplifications in the treztment of

the majority
numerically
are cleerly

boundary conditions. Forms of numerical dissipation
that are presently widely used =zre shown to be not
fully wunderstood and an alternative dissipation

generation concept is proposed.

INTRODUCTICN

Since the pioneering works of Murman and Cole {11,
Jameson [2], Jameson and Caughey [3] and Hafez, South
and Murman [4] there has been an uprecedented surge in
follow-up work in the area of computational trznsonic
aerodynemics. The transonic small perturbation
equation was abandoned by the mid-seventies in favor of

an exact full potential equation for homentropic and
homoenergetic steady flow of a compressible perfect
fluid. Numerical dissipation was for the first

time [2,4] semi-analyticelly substantiated and the need
for a fully conservative [3] numericzl scheme was
explained &s & necessary (but not sufficient) condition
for the uniqueness of a finite difference scheme.

The 1initial enthusiasm and belief that these
numerical schemes are unquestionable in their
correctness was seriously dampened for the first time

during the GAMM meeting in Stockholm {5]. This was the
first zttempt 2t an open and lonest discussion and
comparison ot resultc obtzined by different researchers
using different techniques. Since the results did not
compare too well the whole affair was quietly forgotten
and very little original work was subsequently
performed in this area.

The intention of
several of the most
misconceptions that the originatan
numerical schemes had &nd praet
followers and users never fully undg
The observetions and suggestions
result of many years of work that th
paper has invested in developing ne
thet ere based on the original
others [1,2,3,4].
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But if the potential due to the uniform free stream is
subtracted from #(x,y) these conditions become very
simple in terms of the reduced velocity potential [2]
defined as

P (x,y)=(u _x+v_y)+6G(x,y)

-G -

(3)

In the computational X,Y plane it is convenient to wgrk
with the contravariant components U,V of the velocity
vector defined as
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where wu,v ere the velocity vector components in
physical x,y plane and D is the determinant of the
geometric transformation matrix. It can be easily
shown [3,€] that the so0lid wall boundary condition
(eq. 1) becomes in X,Y computational plene

(5)

The usual way of satisfying eq. 5 is to set the

value of V explicitly to zero at the airfoil surface
v (I,2) =0 (6)

while at the same time evaluating V at imaginary points

inside the solid body (fig. 2) wusing the reflection
principle

V(I,1+1/2) = - V(I,2+1/2) 7
In order to update the values of the reduced potential
at the imaginary points inside the airfoil surface
efter each complete iterative sweep through the flow

field it 1is very common and economiczl to use simple
linear extrapolation [2,6]

G(I,1) = 2. * G(I,2) - G(I,3) (8)
Although it can be argued that the error introduced
when wusing eq. 8 1is negligibly small, the truth is
quite the opposite especizlly in the case of internal
trensonic flows. The printout of the values of
contravariant velocity V(I,2) on the airfoil surface
reveals thet even for an acceptably converged solution
these vslues vary several orders of magnitude reaching
their peaks at the lesding and trailing edge (fig. 3).
This is a cleer problem of numericzl leakage where an

appreciable velocity can result at the stagnation
points although the solution for the rest of the
flowfield 1is relatively acceptable. The incorrectness
of this oversimplified boundary condition (eqs. 7
and 8) may lead to & number of other problems, for
exzmple, an inadequate capability to determine the
leading edge stagnation point locztion neccesary for

accurate boundary layer calculation.

Therefore, an exact formule for determining the
values of G(I,1) should be used instead of the
approximate formulsz given by eq. E. From eq. 4 it

follows thet since V = C on the solid surface
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Hence the exact value of the
imaginary points c&n be obtai
differencing in the computationzl X,

radured potential =zt

d wusing central
plane where aXzaY.

Note that this procedure is dirjptly applicable to

flows with surface transpiration.

BOUNDARY CCNDITICNS AT INLET AND EXI[T] BOUNDARIES

In the case of an O-type or a CHE ype computational

grid it is

relatively hard to poslifion the imeginary

points at wupstream and downstream|||flow boundzries.
This problem 1is routinely dealt With by avoiding to
solve the full potential equation at||the grid points
situated along the upstream end downstream
toundaries (fig. 4), Usually, a fikfd vzlue of the
reduced velocity potential is ke at these points
without ever solving the governing efjfation there - 2
procedure frequently refered to & cutting out a
window. This procedure 1leads toll|an error thet

manifests itself as a velocity defect

overestimate) at the upstream and do
boundaries. The error is
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shape c¢an cause a
numerical results:
shocked and almost
choked (7,8].

significant difference in the
otherwise shockless airfoils become
choked nozzles become fully

Related to this
misconception about
calculation alone,
layer displacement
into account if one
comparison between
results [9].

type of error is a major
the validity of any inviscid flow
At transonic speeds the boundery
thickness must be taken carefully
intends to make any mezgningful
numerical and experimental

An unintentional error is often committed by those
who generate computational grids for transonic flow
computations without fully understanding all the
intricacies of the expected flow field and the
numerical technique used in the flow solver. While
excessivelly clustering grid points along the family of
grid lines conforming with the global flow direction it
is often forgotten that this leads to the creation of
very elongated grid cells with large aspect ratios.
The author's personal experience confirms that the grid
cells with zspect ratios of about three already cause
an oscillatory convergence pattern while larger aspect
ratios unavoidably lead to the divergence of the
iterative flow solution procedure.

The effects of airfoil surface grid clustering
alone might 1lead not only to slightly different shock
locations and sharpness but can also create
oscillations behind the shock (fig. 7).

NUMERICAL DISSIPATION

is a second order
equation of mixed

The full potential equation
quasilinear partial differential
elliptic~hyperbolic type.

2 - (an
ol(1-M7)s o+ 1=0
flow 1is 1locally subsonic eq. 11 tecomes
elliptic and all second derivatives can be discretized
using central differencing. On the other hand, when
the flow is 1locally supersonic the full potential
equation becomes hyperbolic and one-sided streamline
aligned differencing should be used on the second
derivative multiplying the term (1 - M*M) in eq. 11.
This type-dependent [1] rotated [2,3] finite
differencing has the only purpose of trying to
numerically approximate an analytic upstrezm facing
domain of dependence when the full rpotential equation
is locally hyperbolic. The truncztion errors for
central and upstream differencing are not the same and
this discretization error should be somehow eliminated.
Since the leading term of the difference in the two
truncation errors is @ third derivetive of the reduced
potential it is common to refer toc these non-physical
terms as numerical dissipation: a term most probably
based on the similarity of the discretized version of
eq. 11 with the Burgers equation [10]

7-(pV0) =
When the

(12)

There are presently two similar concepts that are
widely wused in & firm belief thzt they cen nullify the
numericzl error introduced when the rotated vupstream
differencing 1is spplied in leccally supersonic regions.
These two concepts zre artificial density [84] and
artificial viscosity [2] added in a fully conservative
form.
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Instead of the artificial dey ity concept many
users prefer the artificial viscosify concept (2]. But
closer inspection of the artifidial density and
artificial viscosity concepts revﬂgls that they are
basically the same: they both gendrlate 2 number of
truly nonlinear terms in the discreflilzed version of the
full potentizl equation. A rigorouf analysis of the
influence of these non-physical Yerms that exist for
any finite grid size is still lackildg. The question

concerning the uniqueness of such di
should be answered first before
existing numerical schemes utilizing
and artificial viscosity and lineari
conditions can be used
nonuniqueness [15,16] of the
differential equation.

Besides, it was analyticelly d
thet the asymptotic flow pattern
viscous, thermally conducting gas
different from the pattern giver
equations for zn ideal gas. These
substantial and dissipation
increasing role with a decrease of
ratio. Consequently, modeling
dissipation should not be as carelds
was regularly done in the past bug
the physics as much as possible [19]

pri

As an alternative approach to
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entire mass flow vector is upstream
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The value of the switching function is here determined
znalytically from the condition that all the nonlinear

terms introduced by the upstream differencing of the
mass flux vector be eliminated identically. The result
is
Y-2
1 _
U= - (az)y 1 (18
G-

that should generate a linearly dissipative modified
full potentisl equation

_ 2 y+1, 1 - (19)
[a-wh e g+o J + cEgo 50 0 =0
This equation 1is similar to a well known viscous

transonic equation ([20,21] obtained by accounting for
linear terms of a physically existent dissipation due
to compressive viscosity effects and heat conduction in
the gas. Since the numerical solution of this equation
has been succesfully obtained [22,23] one could expect
that the artificial mass flux concept is a valuable
alternative to the existing approaches for the
numerical solution of the non-dissipative full
potential equation.

The artificizl mass flux concept should be
understood as only a first step in an attempt to derive
anzlytical expresssions for artificial dissipation that
is based on zctual physical dissipation.

SUMMARY

A number of probable causes of errors
committted

frequently
when numerically solving the transonic full

potential equation have been identified and remedies
end alternatives have been suggested. The conclusion
is that the present numerical techniques use numerous

oversimplifications which, combined with certain basic
misconceptions, often produce misleading and erroneous
results,
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Fig. 6 Suggested Distribution of Inlet and Exit
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