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Abstract

This chapter demonstrates that it is possible to use existing proven arbitrary flow-field
analysis codes without any modifications to perform inverse aerodynamic design of two-
dimensional and three-dimensional shapes. A general concept for inverse design of
aerodynamic shapes based on treating the aerodynamic surface as an elastic membrane
subject to a specified surface pressure distribution is explained. A new mathematical
formulation based on the Fourier series analytical solution of this model is detailed. The
method is formulated for two-dimensional and for three-dimensional configurations. It can
be used in conjunction with any available flow-field analysis code without a need for
modification of such a code. Preliminary testing of the new method is performed with a
potential flow surface panel code, an Euler flow solver, and a Navier-Stokes flow solver. The
convergence rate of the design process is found to be similar for both non-lifting and lifting
aerodynamic shapes with the Navier-Stokes flow solver typically requiring minimum number
of design iterations. Suggestions for further research and improvements are made.

Introduction

Aerodynamic shape inverse design methods have the goal of determining the proper shape of
aerodynamic body such that a desired (target) pressure distribution is achieved on its surface.
There are several methods [1,2,3] that are capable of such inverse determination of domain
size and shape, but most of the methods require the development of new complex
mathematical formulations and the accompanying new software. The majority of inverse
design methods require at least the modification of boundary conditions enforcement
subroutines. This is often non-trivial and even impossible to do if the source code is not
available to the designer. Therefore, inverse shape design methods that require a minimum of
software development and can accept any existing reliable flow-field analysis computer code
as a large interchangeable subroutine are highly desirable.

This chapter focuses on one such formulation. The so-called elastic surface membrane
concept was first proposed by Garabedian and McFadden [4,5] who considered the surface of
an aerodynamic body to deform under aerodynamic loads in a manner similar to an elastic
membrane. Their method was then adapted by Malone et al. [6-9] into what is presently



known as the MGM (modified Garabedian-McFadden or Malone-Garabedian-McFadden)
technique.

The idea behind this method is to model the boundary of an aerodynamic body as a thin elastic
membrane. The membrane is then subjected to a distributed normal forcing function
represented by the local differences between target (specified) surface coefficients of pressure
and those surface coefficients of pressure found by performing an aerodynamic flow-field
analysis of the guessed body shape. Due to the membrane’s elasticity, it then iteratively and
smoothly deforms with time until reaching a steady state configuration, whereby the target
pressure values are matched by those generated by the deformed shape. To model the
damped, unsteady motion of the elastic surface, any artificial or non-physical governing
equation can be used, relating local membrane deformations to the distribution of the forcing

function on the surface of the membrane. One such model, as suggested by Garabedian and
McFadden [4,5], is
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Here, An is the local outward normal deformation of the airfoil contour, T is the time
coordinate, x is the Cartesian spatial coordinate, while coefficients [ are user specified and of
order one. The local difference between the target and the actual computed surface
coefficients of pressure is

ACp = Cp target'cp actual (2)

Since the objective is to determine the steady state condition of the aerodynamic forces, the
time derivatives in Eq. (1) can be eliminated by discretizing the artificial time into equal steps
corresponding to each iteration of the inverse design procedure. If these iterative time steps
are treated as At = 1, then Eq. (1) becomes an ordinary differential equation with constant
coefficients and a forcing function

dAn d%An
BOAD"'ﬁl dx +B2 dX2 ZACp (3)

A common modification to the shape evolution equation (3) is to allow deformations to occur
only in the Cartesian y-direction, simplifying the update of geometries and allowing for faster
computation. This approach, as used by Malone, assumes the governing equation

day B, d2Ay

dx?

BoAy + 81— =AC, (4)

Traditionally, Eq. (4) is solved for the correction (Ay) in airfoil y-coordinates by discretizing
the airfoil contour and utilizing finite differencing at each discretization point, i, on that
contour to represent the first derivative and the second derivative in Eq. (4). After finite
differencing at all of the surface membrane points, the result is a set of linear algebraic
equations of the form

a;Ay;, +b;Ay; +¢;4y;,, = AC,, &)



In the general case when the contour discretization points are unevenly spaced, the finite
difference formulas applied at any point on the airfoil upper contour result in

a, = Bl - 252 (6)
Xi =X (X=X (X —X5)
b, =B, — B, _ B, 0
Xp =X (X =X ) DX —Xy)
2
c, =— BZ (8)
(Xir1 = X)Xy — X;)
while on the airfoil lower contour the result is
= 2B2 (9)
l (X = X)X = X))
b, =B, — B, _ B, (10)
Xign =X (X = X)Xy — X;)
;= Bl _ 2B2 (1 1)

Xin =X (X = X)) (X4 — X4)

The tri-diagonal system (Eq. 5) can easily and efficiently be solved using the Thomas
algorithm. To avoid the ambiguity of the upper and lower contour finite difference equations,
one approach is to fix the trailing edge point.

Ay =0 (12)

and to make the motion of the leading edge node as the average of the displacements of the
two nodes adjacent to it

A _ AYieading edge-1 + AV leading edge+1 13
YIeading edge — ) (13)

One major problem with the classical MGM approach is its slow convergence at the leading
and trailing edges of the airfoil, as compared to the mid-chord regions of the airfoil. Another
major problem is the governing equation’s non-physical, ad hoc nature. Furthermore, there is
no analytical method to determine the optimum coefficients o B;, B, in Eq. (4), although
their choice can radically change the convergence of the MGM inverse shape design process.

In order to improve the quality of the solution of Eq. (4), higher order accurate finite
difference schemes can be implemented by increasing the stencil size used in the calculation
of the derivatives of y-coordinate corrections. This is most easily done by rediscretizing the
airfoil surface such that equidistant points along the airfoil surface contour are used.
Unfortunately, all benefits of grid clustering are lost in the process. Because the stencil size



for all derivatives is increased with improved order of accuracy, stencils for derivatives at
points near the leading and trailing edges of the airfoil can then be made to wrap around to the
other side of the airfoil. This also aids to the smoothness of leading and trailing edge
deformation. In general, the more neighboring points used in the determination of derivatives
at each grid index, the more accurate the derivative. However, the effects of increasing the
derivative order of accuracy are negligible or even detrimental once a certain order of
accuracy has been reached. From numerical experimentation, the optimum stencil size in
most cases was found to be five. When more than five points are used in the determination of
derivatives in Eq. (4), all benefits of increased order of accuracy are opposed by errors caused
by numerical singularity in the coefficient matrix. A disadvantage of larger stencil size is that
the coefficient matrix multiplying the nodal displacements is no longer tri-diagonal, and must
be inverted in a more computationally intensive manner. Using a singular value
decomposition algorithm [10] to invert the matrix and minimize the effect of singularities
(which occur with higher frequency as the derivative order of accuracy is increased) requires a
number of computations proportional to the cube of the number of surface nodes. In
comparison, tri-diagonal systems of equations can be solved with calculations on the order of
the number of equations to the first power. Thus, the higher order accurate process is
significantly slower per iteration than the traditional MGM approach.

In an attempt to counter these problems while improving the convergence rate of the design
process, a new method of solution of the elastic membrane equation has been devised [11,12].
It is based on the transformation of the derivatives with respect to x-coordinate in Eq. (4) to
derivatives with respect to airfoil contour-following coordinate, s. This method uses an
analytical solution of the shape evolution equation in terms of a Fourier series.

Fourier Series Solution of the Two-dimensional Shape Evolution Equation

The analytical solution of the MGM equation given in Eq. (4) is complicated by the fact that
the Bo and B, terms switch signs when moving from the bottom surface of the airfoil to the
top surface (or vice versa). If Bo, Bi, B, are considered to be positive constants, Eq. (4) takes
the following forms on the top and bottom surfaces of an airfoil:

2
Top Surface: BAy +p, 32 _g, 4 Azy = AC, (s) (14)
ds ds
2
A
Bottom Surface: -BoAy + B, ddAy +B, dd zy =AC,(s) (15)
$ s

Both of these equations can be considered as the generalized mass-damper-spring equation.

2
kAy+caAy+ma Ay:AC (16)
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Here, the time coordinate has been replaced with the surface following coordinate, s, and the
forcing function AC,(s) is an arbitrary function of the coordinate s. The homogeneous

solution of Eq. (16) can be found by assuming



Ayy, =e™ a7

On the bottom surface of the airfoil

kbottom =B0 (18)
c=B (19)
mbottom = _B2 (20)
This leads to '
a2
}“bottom __Bl T ﬁl +4B0B2 21
12 = Y 21
2
Ay Eottom - Fbottom exl;ottoms + Gbottom ek';"“‘“"s (22)
On the top surface of the airfoil, the signs of k and m reverse
k®P =B, (23)
rntop = Bz (24)
This leads to
AP — -Bl * VB12 +4B0B2 25)
e 28,
to to]
Ay'® = FPeM® 4 GlPe’t 26)

where F and G are (as yet) undetermined coefficients. The particular solution of Eq. (16) can
be found by creating a Fourier series expansion of the function AC(s)

AC,(s)=ag + Z [an cosN s+b, sin an] 27
where
nmw
N, =— (28)
L

Here, L is one-half of the total arc length of the airfoil contour. A particular solution is
assumed of the form



Ay, =Ao+ 3 [A, cosN,s+B, sinN,s] (29)

n=|

oAy o

—L2 = $[-A,N, cosN,s+B_N_sinN,_s] (30)
S n=I
2
2 Y I[A,N; cosN s+B_ NZsinN_s] (31)
S n=1

Substitution of Eq. (27) and Egs. (29-31) into the general evolution equation (16) and
collection of like terms yields

a
A, = TO (32)
— 2 —
_ a,(k I\zlnmz) b, (CNzn) n=123, (33)
(k—=N:m)*+(cN,)

n

2
(k—Nym)“ +(cN,)

Thus, the complete solution for Ay on the top and bottom surface of the airfoil is

Ay =Fe™ +Ge’* + A, + ) [A, cosN,s+B, sin N;s] (35)

n=l

The unknown constants, F and G, on the top and bottom surfaces are determined by
specifying four boundary conditions. The following four conditions can be used: trailing
edge closure, leading edge closure, zero trailing edge displacement, and smoothness of Ay at
the leading edge. For trailing edge closure condition can be expressed as

Ay®"™™ (0) = Ay'P (2L) (36)
For pinned trailing edge,

Ay bottom (0) =0 (37)

The combination of Eq. (35) and Eq. (36) yields the following boundary condition equation
Fbottom + Gbottom — _iAbottom (38)
=0 "

Similarly, the combination of Eq. (35) and Eq. (37) yields the following boundary condition
equation



thop ZL?\.IOP had
FPe™1 + G =) AP (39)

n=0
The leading edge closure condition
bott tc

Ay (31 5) =AYy (s15) (40)

can be expressed as
jbottom SLE bottom top top
FboltomeSLE 1 + Gbottome 2 _ FtopeSLEM -G topeSLExg @D
_ to bott:
= Ayp p(SLE) - Aypo om (SLE)

The smooth leading edge deformation condition

d o d .

Ei;Ay Oom(SLE)ZES‘Ay OP(SLE) (42)
can be expressed as

bo s Abottom SLE}‘bOttom
oottom )\'?ottom e SLEA + )\’bzottomeottom e 2
Alop Atop
—FUOPAPE LB _ G loppiptiome Stz (43)
d, o d

= p _ = A, bottom

=3 Ayp" (S E) " Ay, (sLE)
F and G coefficients can be found by simultaneous solution of Egs. (38, 39, 41, 43).

Yy q
Fbottom 1 1 0 0 -1
G bottom 0 0 e 21‘xtlop e ZU‘!’E) P
Ftop = . SLE}\li;onom o SLE}\%onom _e SLE}“]oP _ eSLE}"I;p
bo
G P k?ottom oSLEM tom kt;onom eSLE7~3°“°m — AP eSLE’»‘{’" _ }LtgpeSLEXt;p
] N \
_ z Ak;ottom (44)
n=0

< - ZATP >
=0
Ay;:)p (SLE) _ Ay!l;ottom (SLE)

\Ay;op (SLE)__Ayl;ottom (SLE)J

Since the Fourier series formulation is exact, any errors due to finite differencing and the need
for Eq. (13) are removed. The choice of number of Fourier series terms effectively enforces
an upper limit on the frequency allowed in the y-coordinate deformation.



Solving the Three-dimensional Shape Evolution Equation

Generalization of the elastic membrane formulation to surfaces of three-dimensional objects
can be accomplished by a complete form of a second order partial differential equation of the
following type [12]

Ay | %Ay 92Ay dAy  dAy
b d
e s ' C ds? T T

—fAy = F(AC,) (45)

Here, s and t are the surface coordinates in the general streamwise and spanwise directions,
respectively. The forcing function can be generalized as

dAC 0AC

. 9’AC, _ 9%AC,
F(AC,) = ACy + 0y — =+ B —

+ 0y +B,
ds? ot?

p

(46)

Here, the coefficients a, b, ¢, d, e, f, a and  are user specified. The coefficients have been
found [4-9, 11,12] to influence the convergence rate of the iterative shape design process. The
general variation of the surface forcing function, F, can be represented as a Fourier series

F(Cp) = Ex iﬂ[Amn cos(ns)cos(mt) + B cos(ns)sin(mt)

n=0 m=0
47)
+ C o sin(ns)cos(mt) + D sin(ns) sin(mt)]

Similarly, the particular solution of the elastic membrane equation (45) can be represented in
a Fourier series form as

Mmax

Ay? = iv 2’[amn cos(ns)cos(mt) +b . cos(ns)sin(mt)

n=0 m=0
(48)
+ € Sin(ns) cos(mt) +d  sin(ns)sin(mt)]

If the mixed second spatial derivative is kept in the general elastic membrane motion equation
(45), the homogeneous part of the solution of this equation cannot be found directly. A linear
transformation of coordinates [12] is needed in this case that somewhat complicates the
process. For the sake of simplicity and the clarity of explanation, we will continue this
elaboration with the simplified Eq. (45) and Eq. (46) by working with the assumption that

b=(x1=B1=(x2=B2=O (49)
These terms can be omitted without any detrimental effects on the robustness and the

accuracy of the entire design concept, but they may influence convergence rate of the iterative
design process. Then, from Eq. (48) it follows that



oAyP g . : .
= 2 Z— n[a,, sin(ns)cos(mt)+b . sin(ns)sin(mt)

ds n=0 m=0
(50)
— C g COS(ns)cos(mt) —d_ cos(ns)sin(mt)]
2 N max Memax
BaAgfp = f z - nz[amn cos(ns)cos(mt) + b, cos(ns)sin(mt)
S n=0 m=0
(51)
+Cpy Sin(ns) cos(mt) +d,, sin(ns)sin(mt)]
% = f f‘x— m[a , cos(ns)sin(mt)—b_  cos(ns)cos(mt)
n=0 m=0
(52)
+ C o Sin(ns) sin(mt) —d_, sin(ns)cos(mt)]
2 Nax Miax
9 AZP = f 2 - mz[amn cos(ns)cos(mt) + b, cos(ns)sin(mt)
ot n=0 m=0
(53)

+ C g SiN(ns) cos(mt) +d,, sin(ns)sin(mt)]

After substitution of Egs. (47-53) into Eq. (45) and matching of coefficients multiplying each
of the four products of Sine and Cosine functions, the coefficients in Eq. (45) can be
expressed as analytical functions of the coefficients in Eq. (46). That is,

(—-anz—cmz—f) em dn 0

amn

—em (—-an2 —cm? —f) 0 dn b

—dn 0 (—anz—cmz—f) —em Cimn

0 dn —em (—anz—cmz—f) don
Amn
—_— an
=l
Dmn

(54)

Thus, the particular solution of Eq. (45) can be found in terms of the coefficients
A > Bion s Con > D defining the pressure forcing function distribution on the surface of the

elastic membrane.
If, in addition to the simplifications listed in Eq. (49), we further simplify the model by using

d=e=0 (55)



then the elastic membrane equation reduces to a very simple model given by Eq. (56)

d’Ay  9%Ay
a +c —fAy = AC (56)
0s2 ot? P

The particular solution of Eq. (56) can be expressed as

Bmax Mmax

Ay? = z 2{[—Arlnn cos(ns)cos(mt) —B__ cos(ns)sin(mt)

n=0 m=0
(57)

—C o sin(ns) cos(mt) — D, sin(ns) sin(mt)]/(an’ + cm? + )}

This simple expression is very easy to program. It is capable of generating three-dimensional
wing shapes involving both aerodynamic twist and geometric twist variations. When the
difference between the specified and the calculated surface pressure has abrupt variations as
in the case of a shock wave, this formulation creates a surface depression underneath the
shock that oscillates along the wing surface as an undamped surface wave. Consequently, for

design of shocked transonic configurations, the simplifications listed in Eq. (54) should not
be used.

Inverse Design of a Rectangular Patch of the Surface

If it is desirable to modify only one portion of an aerodynamic surface while maintaining the
original shape of the rest of the body, the following formulation should be applied.

(smin, tmax) (smax. tmax) O,m (TL.T0)
(smin, tmin) (smax, tmin) 0,0 (m,0)

Fig. 1: Coordinate Mapping for Design of a Quadrilateral Surface Patch.

In order to maintain continuity of the surface, Ay at each patch boundary must be fixed at
zero. This can be accomplished by scaling the patch s and t coordinates to a rectangle with
coordinates as shown in Fig 1, and using a Fourier Sine series (that is, amn, Dmn, Cmn =0) to
represent the deformation function Ayy(s,t). Then, the particular solution automatically
satisfies all boundary conditions, and there is no need for a homogeneous solution.

Omax Mmax _ : .
Ay(s,t) = 2 z Dy sin(ns) sin(mt) .
2 2
n=l m=] an“ +cm*“ +f



Inverse Design of Three-dimensional Wings

For wing shape design it is desirable to enforce the following boundary conditions on the
displacement Ay:

1. The displacement should be symmetric about the root section (vertical symmetry plane).
2. The displacement should be periodic in the s-direction for each span station.

3. The span-wise derivative of the displacement should be zero at the root section.

4. One point should be fixed. For example, the trailing edge of the root section can be fixed.
Firstly, scaling of the s and t coordinates of the wing should be performed as shown in Fig. 2.

(0, tmax) (smax, tmax) 0O,m) (2m,m)
Bottom Top :> Bottom Top
Surface Surface Surface Surface

0,0) (smax, 0) (0,0) (2m,0)

Fig. 2: Coordinate Mapping for Design of a Three-dimensional Wing.

Then, the four above boundary conditions can be mathematically expressed as:

Ay(s,t) = Ay(s,~t) (59)
Ay(0,t) = Ay(27n, t) (60)
Ay, (s,0) =0 61)
Ay(0,0)=0 (62)

A Cosine series in the t-direction with Sine and Cosine terms in the s-direction for the
particular solution with assumptions listed in Eq. (49) and Eq. (55) automatically satisfies the
first three boundary conditions.

Dmax Mpax __ A )= C . .
AyP (s, t) = z mn €0s(ns) cos(mt) ~ C . sin(ns)cos(mt)

2 2 (63)
n=0 m=0 an”“ +cm” +f

Using a solution of the homogeneous part of the simplified elastic membrane equation can
satisfy the remaining boundary conditionlIf Ayh is a function of coordinate t only, the solution
can be expressed as

Ay"™ =Fcosh t\/i +Gsinh t\/z (64)
a a



For zero displacement at the wing root trailing edge point,

Nmax Mmax A

A O =-ayPO0)= Y Y ——m (65)
n=0 m=0 an”- +cm< +f

Ay"(0)=F (66)
Nmax Mmax
- o)
._0
For zero slope of displacement in the t-direction at the root,

dAy"
ot

h
oAy” _ (Fsinh t\ﬁ +Gcosh t‘/i )\ﬁ (69)
ot a a Va
\/?
(70)
a

G=0 (71)

nﬁ‘ mf" Amn cosh[t\/g]
Ayh

=0 m=0 an’ +cm? +f

8Ay

(0)=-——(0,0)=0 (68)

aAy

(72)
Combining the homogeneous solution (Eq. 72) and particular solution (Eq. 63) results in

Ann [cosh{t\/zj— cos(ns)cos(mt)] - C . sin(ns)cos(mt)

R ) o)

n=0 m=0 an +cm2+f

(73)

Numerical Results
a) Two-dimensional airfoils

The high non-linearity of flow-field governing equations, such as Euler and Navier-Stokes
equations, has been suspected to cause significant reduction in the speed of MGM
convergence [9]. To clarify this issue, three flow-field analysis codes have been used in
conjunction with the original MGM and the Fourier series method. The three flow-field
analysis codes were: a surface panel code with a compressibility correction, an Euler equation



solution compressible flow code, and a compressible viscous flow Navier-Stokes code with a
Baldwin-Lomax turbulence model.

Two airfoil design cases were examined. The first case utilized a target coefficient of
pressure distribution corresponding to a NACA0012 non-lifting airfoil at free stream Mach
number M = 0.5. The initial geometry in this case was a NACA 0009 non-lifting airfoil. The
second case utilized the coefficient of pressure distribution of a NACA1311 cambered airfoil
as its target. The initial geometry here was a NACAOQO012 non-lifting airfoil. In both cases,
the inverse design process was performed using each of the three flow-field analysis codes in
conjunction with the MGM procedure and the Fourier series technique. Composite plots of
the convergence histories of these processes are shown in Fig. 3. For both design cases and
all three flow-field analysis codes, the Fourier téchnique outperformed the MGM technique.
A typical geometry and coefficient of pressure distribution evolution using the Fourier
technique are shown in Fig. 4.

The slow convergence of the classical MGM technique with nonlinear flow-field analysis
codes is most evident in the case of the lifting airfoil design (Fig. 3b). In this case, the Euler
+ MGM combination ceases to converge after three design iterations, and the Navier-Stokes +
MGM combination ceases its convergence after five design iterations. This difficulty was not
encountered when using the Fourier series technique, as in both the lifting and non-lifting
cases the design converged faster with the Euler and Navier-Stokes analysis codes than with
the panel code [11].

b) Three-dimensional wings

Several wing design test cases were carried out using a three-dimensional panel code with an
algebraic compressibility correction. The wingtip airfoil in each test case had a non-zero
thickness. Each inverse shape design test case was performed with free-stream Mach number
M = 0.2. For all three-dimensional results, the maximum number of Fourier terms to be
considered in the s- and t-directions, np,, and mp,, wWere set to 120.

The first panel case tested the Fourier technique’s ability to modify a wing’s thickness
without affecting its symmetry. The wing planform was rectangular with a semi-span three
times as large as the chord. The target pressure distribution was obtained from a three-
dimensional panel code analysis of a wing whose airfoil shape varied smoothly from a
NACAOQ012 airfoil at the root section to a NACAO00Q9 airfoil at the wingtip. The initial guess
wing had a NACAOO012 airfoil shape at all span stations. The wing grid had 64 panels in the
s-direction and 19 panels in the spanwise direction. The shape evolution parameters a, ¢, and
f were set to 6.0, 0.5, and 1.5, respectively.

As shown in Figure 5, the designed wing’s coefficient of pressure distribution nearly
duplicated the target after ten calls to the flow-field analysis code. Small discrepancies in the
pressure distribution can be seen at the wing tip section, and there is a noticeable bump in the
pressure distribution of each section of the designed wing near the trailing edge. This trailing
edge pressure spike, though physically unexplainable, occurred in each of the three-
dimensional panel code tests that were performed. The shapes of the initial wing, the final
wing, and the wing after one design iteration are shown in Fig. 6. The essential three-
dimensionality of the shape change can be most notably seen at 0% span. Here, where the
initial and the target airfoil geometries and corresponding pressure distributions are identical,



one would expect no change of the root airfoil shape during the inverse shape design process.
However, as the general trend of the entire wing is toward a lower thickness, the root section
experiences some loss of thickness after one iteration. The root section must then regain its
original shape. Thus, in such a case where the root section coefficient of pressure is
unmodified in the design target, it could be quite useful if the entire root section of the wing
geometry is kept unchanged. Also, at 30% span, the initial geometry modification overshoots
the appropriate thickness of the wing, but then converges to the target shape after
approximately ten design iterations.

The second panel test case examined wing twist. The wing planform was rectangular with a
semi-span of two chord lengths. The target pressure distribution was calculated from analysis
of a wing with NACAO0012 airfoil with a one degree angle of attack at the root section and
three degrees angle of attack at the tip. The initial guess geometry also had a NACA0012
airfoil shape, but included no wing twist. The wing grid had 64 panels in the s-direction and
14 panels in the spanwise direction, clustered toward the wingtip. Parameters a, ¢, and f were
set to 6.0, 0.5, and 1.5 respectively. Figure 7 depicts the initial coefficient of pressure
distributions at several span stations and their values after the tenth iteration with the Fourier
series design method, and the target values. Again, a spike in the pressure distribution is
being generated at the trailing edge of the wing, most noticeably at 80% of the wing span.
Figure 8 depicts the initial geometry and the geometry after the first and the tenth iteration.

The third panel case involved evolving wing thickness, camber, and twist. The wing had a
taper ratio of 0.5 and a leading edge backward sweep angle of 7.125 degrees. The semi-span
was equal to two root chord lengths. The target pressure distribution was obtained from
analysis of a wing having a NACA1311 root airfoil shape and a NACA2412 tip airfoil shape
with three degrees angle of attack at the tip. The initial geometry had a constant NACA0009
airfoil shape with a negative one degree angle of attack at the tip. The wing grid had 64
panels in the s-direction and 19 panels in the spanwise direction that were clustered toward
the wingtip. The shape evolution parameters a, ¢, and f were set to 7.0, 0.9, and 1.2. As seen
in Fig. 9, the target pressure differs from the tenth iteration design values mostly near the
wingtip and at the trailing edge. The evolution of the geometry is shown in Fig. 10.

The fourth test case was examined in conjunction with both a three-dimensional Euler
equation solver and a turbulent Navier-Stokes equation solver. In these cases, a wingtip that
quickly shrinks the airfoil thickness down to zero was added to each wing. The
computational grid was regenerated after each application of the Fourier series design method
by stacking two-dimensional C-grids generated for each span station. Additional grid layers
were provided beyond the wingtip so that finite wing effects could be included.

The subsonic Euler design case was applied to a wing with a taper ratio of 0.5. The leading
edge sweep angle was 14.03 degrees and the trailing edge had zero sweep, while the semi-
span was two times the root chord length. The free stream Mach number was M = 0.6. The
target pressure distribution corresponded to a severely twisted wing with a root airfoil
NACAO0009 at +4 degrees angle of attack and a tip airfoil NACA1311 at 4 degrees angle of
attack. The initial geometry for the design process had root airfoil NACA2412 at —4 degrees
angle of attack and a tip airfoil NACAQ0O09 at +4 degrees angle of attack. Twenty span
stations, 32 C-layers, 64 grid cells on each airfoil, and 16 cells along the wake defined the
computational grid. The shape evolution parameters a, c, and f were set to 7.0, 0.9, and 1.2,
respectively. The preliminary results indicate (Fig. 11) that target pressure distribution is not



fully achieved near the root and tip after twenty design iterations. Figure 12 depicts the
change in geometry of the wing during the design process.

The subsonic Navier-Stokes design case was identical to the subsonic Euler case, except that
viscosity effects were included in the target pressure distribution. A Reynolds number of one
million was used. The shape evolution parameters a, c, and f were set to 7.0, 0.9, and 1.2,
respectively. The results of this inverse shape design case are shown in Figs. 13 and 14.
Comparison with the results from the corresponding Euler case (Figs. 11 and 12) shows little
difference in the performance of the code.

One Euler equation design case was attempted in transonic flight conditions, seeking to
design a fully subsonic wing from a wing with a shock wave at the flight Mach number M =
0.8. The wing planform had a taper ratio of 0.5, leading edge sweep angle of 14.03 degrees,
zero trailing edge sweep, and semi-span of two times the root chord length. The initial guess
had a NACAO0O12 airfoil shape at 5 degrees angle of attack. The target pressure distribution
corresponded to a high subsonic non-lifting wing with a NACAO0009 airfoil. The
computational grid was defined by 20 span stations, 32 C-layers, and 100 grid cells per
airfoil. The shape evolution parameters a, c, and f were set to 7.0, 1.2, and 1.6, respectively.
As shown in Fig. 15, after twenty iterations, the wing still had some lift despite its non-lifting
target pressure distribution. More dramatic was the airfoil shape obtained after the first
iteration of the Fourier series technique. A large dent was developed at the location of the
shock wave on the upper surface of the wing (Fig. 16). A potential danger in supplying a
discontinuous pressure distribution as the target pressure in the Fourier series method is that
the surface curvature can locally overreact to the discontinuity, causing a concavity on the
surface of the wing. However, after 20 iterations in this case, the concavity was removed,
leaving a smooth wing shape (Fig. 16) and no shock wave (Fig. 17).

Conclusions and Recommendations

A general formulation for the elastic membrane concept in aerodynamic shape inverse design
has been explained. Details were given for a finite-difference based MGM method and for a
Fourier series based analytical method for its implementation. The main advantage of both
design methods is that they can be very easily programmed and used in conjunction with any
available flow-field analysis code without a need for modifying such a code. From a detailed
sequence of numerical tests of the Fourier series technique as applied to isolated airfoil
design, it can be concluded that the convergence rate of this method does not depend on the
non-linearity of the flow-field solver used. The Fourier series method was found to
consistently converge faster than the MGM method, resulting in fewer calls to the time
consuming flow-field analysis code. When applied to three-dimensional wing design,
preliminary results show that the Fourier series technique is able to design subsonic wings in
conjunction with a panel code, an Euler solver, or a turbulent Navier-Stokes solver. Cases
involving shocked initial or target pressure distributions may be subject to overly dramatic
changes in curvature in the region of the shock when using the simplified formulation
presented here. It is possible that the inclusion of the mixed second partial derivative term
and/or the first derivative terms on the left hand side of the elastic membrane shape evolution
equation (56) could eliminate this problem by rapidly damping the elastic surface oscillations.



The addition of derivatives of pressure on the right hand side of the general elastic membrane
model (Egs. 45 and 46) could potentially significantly increase the convergence rate of the
design process. Another possibility to significantly reduce the number of calls to the flow-
field analysis code would be to devise a procedure for optimizing the user specified
coefficients in the elastic membrane model equation.
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Fig. 3: Convergence histories of MGM and Fourier methods applied to identical

problems. M=0.5. Re=1000000 for Navier Stokes case.

ia Nonlifting case: NACA 0009 evolves into NACA 0012. Beta=(1.2, 0.0, 0.4).
b) Lifting case: NACA 0012 evolves into NACA 1311. Beta=(1.4, 0.0, 0.6).
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Fig. 4: Fourier method: evolution from NACA 0012 to NACA 1311 airfoil. Navier
Stokes solver. M=0.5. Re=1000000. Beta=(1.4, 0.0, 0.6)

a) Evolution of geometry. Y-axis enlarged for clarity.

b) Evolution of surface coefficient of pressure.
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