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A new acceleration concept for iterative schemes is described. The concept is based o

variational calculus, and can be readily implemented in the iterative solution of a wide var
and nonlinear differential systems. The method is not limited to finite difference, finite eles
volume discretization schemes, but only to schemes that are inherently iterative. Most imj

method is exact in the sense that optimal relaxation/acceleration factors can be analyticall

for a class of commonly encountered systems possessing simple nonlinearity. For syster

complex nonlinearity, the method can be applied in a semi-exact but highly accurate
truncated Taylor series. Without any modification, this acceleration method can be direc
existing iterative schemes using either orthogonal or completely arbitrary non-orth
putational grids, since the formulation of the method is dependent only on the governir
system. The described method belongs to the general class of minimal residual techniqug
applied to nonlinear systems.

1. Introduction

The numerical solution of linear and nonlinear ordinary and partial differ
has recently become one of the most important aspects of applied research
engineering. Large coupled systems of differential equations are now being sol
today's supercomputers [1-3]. Nevertheless, the differential systems that are
usually approximations to exact mathematical models. In addition, the ¢
physical geometries that are studied are somewhat limited by computer s{
considerations, even on Class VI machines. Thus, it is imperative that n
accelerating the convergence of numerical schemes be developed, allowin
study of complex fully three-dimensional problems governed by exact mathg

Presently. there are several methods for accelerating the convergence of nuj
In the nonlinear case these methods include the multiple grid method [4.5].
determination of the dominant eigenvalue of nonlinear relaxation matrices |4
abundance of literature related to linear problems. including Young’s piof
optimal relaxation factors [8]. conjugate gradient methods [9]. and minimal }
[9.10]. The multiple grid methods have been shown to offer significant 1
vergence rates but are somewhat difficult to implement. Acceleration scheme
determination of the dominant eigenvalue of very large iteration matrices
disadvantages: (a) the methods are inherently approximate, and (b) the aj
strongly dominant eigenvalue exists is not always true for nonlinear proble
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systems can be solved efficiently with the use of existing linear theory (2, 3, 11,

]. However,

most problems of practical interest in, say, fluid dynamics are strongly nonlingar, and the

linear theory can only be applied by first linearizing the governing equations.

It is the objective of this paper to introduce a new and very general concept fq
determination of optimal relaxation and aceleration factors for the numerical so
linear and nonlinear ordinary and partial differential equations. This new methd
minimizing the residual at each step of the iteration process by analytically ds
optimal acceleration factor.

Several numerical examples of the acceleration method are shown with
plications to solution of Burgers' equation, the heat equation and the full p
pressible flow equation.

2. Analysis

Assume that we are solving a system of coupled (non-) linear algebraic equa
from a discretization of a set of differential equations. For demonstrative purj
confine the analysis to a system of differential equations in one dependent
two-dimensional computational domain. Note that the analysis 1s valid for an ]
system in any number of dependent variables. The differential system to be solv

Lo =F.

where L is a (non-) linear differential operator, @ is the dependent variable and
right-hand side (or forcing term). After discretization, the system can be written

lp, =T,

where ¢, is the exact solution of the discrete system at the grid point defined b
and j for 1<i<p and 1<j=gq.l is the discrete analog of L, and f ig
representation of F. As in all iterative schemes, we assume an initial guess for
the solution until the desired convergence is achieved.

Now, assume that given ¢" we can calculate a temporary value "' from

$n+1 — ¢n +M¢n’
where M is a scheme-dependent operator that gives the correction
6¢n Ed;n-*l_¢n :M(b"

which is to be added to ¢" to obtain ¢" ' at each grid point of the domain.
techniques are implicit meaning that the correction is dependent on the new itg

86" =M(¢". ™).
Let the actual value of the new iterate ¢
¢ ¢5 + wdds .

where the iterative acceleration factor w is a constant over the domain {2 but
one iteration to the next. Our objective is to determine an optimal value of w.
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2.1. Optimum acceleration factor
Let the residual left by the nth iterate of ¢ be defined by
Ri=l¢;-f.
The residual at the new iteration level n + 1 is given by
Ry = R(¢5") = R(d] + wd¢7) .

We will seek the minimum of the L?>norm of R""' with respect to w.
If we assume that the residual obeys the relation

JJ(R"*‘)de <”(R")2dn

for all n greater than some m, then a method in which we seek to minimize

iteration n + 1 will produce a sequence of iterates which will converge to the ex

within some given tolerance. Define the cost function J(w) by

@)= [[ ®y a0,

N
and thus

dw

2

min[J(w)] implies 0 and Pt 0.

2

For governing differential systems (1) possessing simple nonlinearity (i.e.

359

™)

®)

Re residual at
4t solution ¢.

9)

(10)

terms in the

governing system are simple polynomials in the dependent variables), the new residual is a

polynomial of degree N in w,
Ri'=a¢+ aiw+ axw’+ -+ ayo™ |

where the a,, 0<m < N, are functions of the known quantities ¢ and d¢j
possesses any nonsimple (complex) nonlinearity, we can approximate the compl
with a simple truncated Taylor series. This approach produces a residual of thg
(11), where the equality should be replaced by an approximate equality. Th
Residual Polynomial (RP) given by (11) depends on the system (1). The order
not depend on the differential order of the governing equations but only on ths
nonlinearity and/or the number of terms in the truncated Taylor series exj
complex nonlinearity. This fact will be demonstrated in the examples below.
From (9) and (10) it follows that

ﬂ-— "*1_8_ n+1 _
aw_2”R 2 (R d0 =0
[e}
and
_Q_zi_ n+1_(£_ n+1 i n+1 2}
awz_zﬁ{R < (R )+[aw(R )] an.

n

(11)
1f the system
elr nonlinearity

orm given in
ol order of the
WLthe RP does

rder of their
dnsion of any
(12)

(13)
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Substitution of (11) in (12) results in
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%on'*' A,w+A2w2+"'+A2N_1w2N_1=0 (14)
and
aJ — ) 2N-2
5—‘:’7—A‘+2A2w+"'+(_N_1)A2N_1(L) >0, (15)
where the A,,, 0 <m < 2N ~ 1, are known functions of the a,. 0<m = N. For|gxample,.
(16)

Ag= 2Jj (apa;)df.

For a discrete problem the integrals can be approximated with appropriately
over the grid points.

The solution of the minimization problem (10) is thus reduced to finding the
the Minimizing Polynomial (MP) given by (14). Each of the real roots is teste

ones produce local minima using (15). Of these roots, the optimal value of w i

one producing the minimal value in the L*-norm of the residual (11).

The general procedure for accelerating an iterative scheme can be summariz

n+1

Calculate temporary values of "' at all grid points using (3).
From ¢" and ¢"*' calculate 8¢" from (4).

Form the RP and MP from (11) and (14) and find all roots of the
Test the roots of the MP using (15) and (11) to find the optimum
Calculate the actual new iterates ¢"*' from (6).

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

3. Examples of applications

To illustrate how the form of the MP relates to the governing equation, and

the acceleration procedure we will look at three examples: Burgers’ equs

dimensional heat equation and the two-dimensional full potential equation fg
flows.

3.1. Burgers’ equation

Burgers' equation models a simple one-dimensional convective and diffusive

va l

yeighted sums

ir\’ -1 roots of
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sichosen as the
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e of w.
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process and 1s

given by

9 . __ 0 0 a*

a?®? " ax (2¢)+V6x2¢_R(¢)' (17)
The RP is found from

R"™'= R(¢" + wddp") = ao+ a,0 + a0, (18)

where
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ar= ~ L B(@" ]+ v s (47) = R(67)
ax ox* ’
ar= — L (9766 + v 25 (697)
ax ax* ’

a:= — =266
The MP then becomes
MP = (g, + a0 + a:w?)(a, + 2a,0)
= (aea;) + w(ai+ 2a.a,) + w*(3a,a,) + w*(2a3).

Note that the order of the nonlinearity in Burgers™ equation is 2 and this prod
order 2(2)— 1 = 3. Writing (20) for each grid point of a computational domain, a
over the domain gives the global MP,

Mpglobal = AO + A]w + Azwz + A3(L)3

which can easily be solved to find the optimum value of w.

3.2. The heat equation

The heat equation is given by
9 4 oV =
Py ¢ =aVp=R,

where a is the thermal diffusivity. The RP is found from
R™'= R(¢" + wdp")= aVi (" + wdd") = ao+ a,w .

Since the heat equation is linear, the RP is a linear function of w. The MP is als
is given by

MP = (a,+ a,w)a;) = (aca,) + (a})w .
Forming the global MP as in (21) we get
MPiopa = Ao+ Ao =0,
Thus for this linear equation (as in all linear systems) we can immediately solve

—Ad A

Wopt =

3.3. The full potential equation

The full potential equation is the mathematical model for homentropic. comprs
irrotational flow of a perfect gas. It is derived from the continuity equation

(pds)s + (pdy), = 0.,

where ¢ 1is the velocity potential defined by V =V¢. and the density p 1s
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isentropic relation

p=0BH+ D)3y - 1)@i+ &NV = p(ds, By) -

All quantities are normalized by their respective critical conditions. Clearly thi
highly nonlinear function of ¢. In this case the residual is given by

R™ = (1017, + (783,

¢ = @5+ wde?,
3= ¢+ wbd3,
"= p(g37 957,

The residual is not a simple polynomial in w due to the presence of p in (29). N
can obtain R in the form (11) if p is expanded in a second-order accurate tr
series. The result is

pmtl=p" + 8piw + 8p.w® + Of(wde. ), (wbe, )],
where 8p, and 6p, are given by

where

801 = [~ L (.56, + 6,56, |

bl
n

o3 = [ L {1~ nE-1]es.r+ [@-n'EBd]ss.s0,
ile-nS-1)esr}]|

Substituting (33) into (29) and using (30)}-(32) we obtain

n

R™'=go+ a,w + a,w’ + aso> .

Thus the RP is of order 3 and the MP is of order 2(3)~ 1= 5.

4. Results

To test the nonlinear minimal residual acceleration scheme, Burgers’
numerically solved on the interval —3<sx<0. with v =0.07. ¢(-3)=1 a
spatially second-order-accurate finite difference discretization of (17) coupl

b
”

DR

(28)

density p is a

(29)

(30)
(31)
(32)

vertheless, we

gncated Taylor

(33)

(34)

(35)

(36)

equation was

i 60)=0. A

1 with a tem-

porally first-order-accurate Euler one-step explicit time-consistent integratiph scheme was

formulated and is given by

@n ) (0] . (@1 -2¢7 + ¢11)
(4Ax) (Ax?)

8" = At{

2

(37)

held fixed throughout the calculation. The initial guess for ¢(x) was a line
between the given values at the endpoints. Starting with this initial guess, t
iterated for 800 time steps as shown in Fig. 1 (dashed line).

The linear explicit stability criterion, v A/Ax* < 0.5 was used here to determir%L

At which was
interpolation
solution was
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Fig. 1. Convergence history of explicit time-dependent
solution of Burgers' equation: non-accelerated (---);

Fig. 2. Optimal acceleration factor uf
of iterations for explicit time-depe

d versus number

accelerated using fixed stategy ( ).

Burgers’ equation using fixed strate

Next, the new acceleration method was applied using 8¢ from (37) to fin
value of the acceleration factor . The accelerated convergence history is §
(solid line). In practice, it was found that a fixed strategy of setting w = 1 for fiv
then w = wop for two iterations produced the best results. Fig. 1 clearly sha
nonlinear problem, the linear explicit stability limit on Ar can be far exceede

jrent solution of

| the optimum
bwn in Fig. 1
iterations and
that for this
Fig. 2 shows

that at one point in the calculations, the effective time step (wo.pnAf) was over|B00 times that

given by the linear explicit stability limit. Two adaptive strategies for determi
non-accelerated (w = 1) iterations to use between each accelerated (@ = @op)
tried. These two strategies are defined as

I¢)
1 for % (wop[) >1,
w =4 P
wope  for n (Wop) <1,
and
62
1 for %5 (wopl) >0 b
w - 4 62
wopt fOI’ 5? (wop[) < O .

The first strategy is based on the concept of letting wop build up until an addj
with w = 1 does not increase w,, by more than one. This strategy gave very lag
residual but only at a few points in the global iteration (Fig. 3 (solid line)). The
is based on maximizing the rate of change of w,, (Fig. 4 (solid line)). This stratd
comparable to the previously discussed fixed stategy.

To test the new minimal residual technique on a linear two-dimensional prd
solved on a unit square using both a time-dependent integration scheme
overrelaxation. The two solution schemes are given by

D)

b

g how many
teration were

(38)

(39)

onal iteration
drops in the
rcond strategy
y gave results

lem, (22) was
nd successive




364

—

S.R. Kennon, G.S. Dulikravich, Optimum acceleration factors for iterative solution|

+1. 00OE+00 ] +1.000E+00} ' K ' 3
| |
i |
+7.500E-01} . +7.500E-01+ ;
— N ! —
c i = j
7} j 7]
w | wi
< +5. 000E-01+ 1 € +5.000E-01 } . .
0 1 R " * :
w | R w i N i
« « . - )
+2.500E-01+ A 1 +2.500E-01+ s 41
; N i N
| T ! . !
‘ Tl I Tl
+0. 0DDE+00 . . +0.000E+00} -
0.0 200.0 400.0 600.0 800.0 0.0 200.0 40¢.0[[[é0c.0 800.0
NUMBER OF ITERATIONS (TIME STEPS) NUMBER OF ITERATIONS|[KTIME STEPS)
Fig. 3. Convergence history of explicit time-dependent Fig. 4. Convergence history of explici{ fime-dependent
solution of Burgers' equation: non-accelerated (——-): solution of Burger's equation: non-ad¢elerated (---):
accelerated using first adaptive strategy (——). accelerated using second adaptive str3tfegy (——).
60" :r[¢r+l.j+¢?—1,j+¢?,]+l+d>?,j—l—'4d)?.j]v (40)
8¢p" =0.25[p72, + dlus, T Pl t I —4oT) . (41)
where r = A1/Ax*=<0.25 and Ax = Ay. Initial and boundary conditions on ¢ (x. y|iJt) were
d(x.y;:0)=1.
¢(0.y:)=15, ¢, y;1)=0, (42)

é(x.0,1)=0, $(x.1:1)=0.

Fig. 5 shows the convergence history of the fixed strategy accelerated (sq
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——

non-accelerated (dotted line) time-dependent explicit integration scheme. A
the explicit stability limit can be exceeded.

Young [8] analytically found an optimum value for w that minimizes the sp
the successive overrelaxation iteration matrix as the number of iterations tend
other words, the asymptotic rate of convergence is maximized. Setting w =
convergence history shown in Fig. 6 (dotted line). Using the new acceler
(w = wopm) We get the result shown in Fig. 6 (solid line). This result appears to de
we can maximize the average rate of convergence [9] as in so-called semi-ite
involving Chebyshev polynomials. Moreover, a result shown by Varga [9] that t
of convergence approaches the asymptotic convergence rate as n— > is con
numerical experiment.

Finally, the nonlinear minimal residual acceleration method was applied to
the full potential equation (27). An existing computer program developed by D
that solves the full potential equation for compressible flows through airfoil casq
finite area technique and locally type-dependent rotated finite differencing w
include the new acceleration method. The original program uses the succes$
relaxation technique (SLOR) to determine the change in the potential 8¢, at ea
O-type non-orthogonal boundary conforming computational grid. The modifieq
these computed changes (along with the known solution) to determine w,p for
sweep.

b
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by the solid line. The accelerated scheme produces an order of magnitude larg
residual on both the coarse and the fine grid than the non-accelerated scheme.

5. Convergence rate specification

An important property of the nonlinear minimal residual method is that thg

global residual, given by the cost function J(w) (9) is a simple polynomial of dg
Hence. we can determine a priori the value of the global residual at the new
n + 1. Define the convergence rate 8 of the accelerated scheme by

g=Jrn.
Thus

B=1+Bw+Bw*+ -+ Bayo™
or

(I_B)+Blw+Bzw2+" 0.

-+ BZNsz

Therefore, we can prescribe a desired convergence rate . and at each iteration

the value of w compatible with the specified convergence rate 8. Note that
small, that is. if the prescribed value of 8 does not exceed the maximum possib
rate, we get

In(J"/J%) = n(ln B).

Thus the convergence will exhibit exponential decay.

An alternative to prescribing 8 would be to fix the number of iterations, n,
desired final value of the global residual, J. The value of B that gives the desireq
by

B — (Jn/JO)l/n .
Fig. 7 shows the convergence history of the full potential equation solution o
when the convergence rate is specified. Results are shown for three values of
and 0.856. When B8 = 0.856 we see that the convergence no longer exhibits expq
that is, we have specified a value of B that is too small (the maximum possib
rate is exceeded during the last few iterations). Note that we could specify 8 ng
but as some function of the iteration count n. Thus, we could specify that 3 be
beginning of the procedure, and have its value increase with n. The advantages
are (a) one has complete control over the convergence of the scheme. and (b) th
will be smooth.

6. Summary

A new technique for accelerating the convergence of iterative solution met
and nonlinear differential systems have been presented. The method is based
variational calculus and it can be applied to any ordinary or partial differential
be solved by an iterative method. in either an exact or semi-exact fashion. Mo
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computer programs can be readily modified to incorporate this acceleration method. For all

test cases considered, the method was shown to provide a significant impro

convergence rate.
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