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ABSTRACT

A computer code that generates shock-free tran-
sonic compressor cascade shapes while taking into
account viscosity effects is developed. The mathemat-
ical model for the inviscid flow field is the full
potential equation. The Kutta-Joukowski condition is
satisfied by varying the free stream angle at down-
stream infinity. A boundary fitted computational grid
of C-type is generated using a sequence of conformal
mapping and nonorthogonal coordinate stretching and
shearing transformations. The inviscid calculation is
performed sequentially on up to four consecutively re-
fined grids thereby accelerating the convergence of
the solution process. The full potential equation is
solved using a finite area technique and rotated, type-
dependent finite differencing. Artificial viscosity
of the first order is added in a fully conservative
form. Shock-free cascade airfoil shapes are obtained
using the fictitious gas concept of Sobieczky and the
method of characteristics in the rheograph plane.
Viscosity effects are incorporated via a boundary layer
displacement thickness. The integral boundary layer
code is based on Rotta's turbulence model and assumes
transition region of zero length.

NOMENCLATURE
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Speed of sound

Cascade airfoil maximum chord length
Coefficient

Determinant of the Jacobian: 3(x,y)/d(X,Y)

Coefficient
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Gap distance between leading edges of two
neighboring airfoils in the cascade
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Boundary layer shape factor
Complex number i = v-1
Mach number

Fictitious gas parameter

O " B -

Velocity magnitude
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u,v Velocity vector components in physical plane
(x,y)

u,v Contravariant velocity vector components in
computational plane (X,Y)

w Complex plane with (x,y) coordinates

X,y Cartesian coordinate system; physical plane
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Coordinate system in the computational plane
Complex "circle" plane

Complex "strip" plane

Free stream flow angle

Cascade stagger angle

Ratio of specific heats

Constant

Velocity potential
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Fluid density
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Momentum and energy thickness

s

£,n Artificial (numerical) viscosity components

Subscripts

BL boundary layer

D drag

e outer edge of the boundary layer
fictitious

F friction

is isentropic

LE leading edge

n,s locally streamline aligned cartesian coordinate
system

t artificial time

el upstream infinity

oo downstream infinity

* critical conditions




Supercripts

central finite differencing

upstream finite differencing
INTRODUCTION

This work represents an extension of earlier re-
search on the design (1,2,3) and analysis of transonic
shock-free cascades for compressor blade application.
It has been consistently observed that very small
changes in a cascade airfoil shape (particularly in
regions covered by supersonic flow) can alter the en-
tire character of the transonic cascade flow field.
Changes in thickness of the same order of magnitude as
the boundary layer displacement thickness can change a
transonic shocked cascade flow into a transonic shock-
less cascade flow (2) and vice versa. Moreover, such
small changes in shape can unchoke an already choked
cascade (2,3).

The conclusion is that transonic cascade effects
cannot be readily deduced from subsonic cascade or
isolated transonic airfoil data. The most important
conclusion, though, is that viscous effects must be
accounted for in all transonic compressor cascade flow
calculations, and results of the inviscid flow field
computations alone (if done correctly) cannot be com-
pared to experimental data. Serious doubts concerning
the global aerodynamic effects of surface transpira-
tion cooling techniques for transonic turbine cascades
can also be raised. This question remains to be fur-
ther investigated.

Incorporation of simplified viscous/inviscid in-
teraction in supersonic shocked compressor cascade
flow calculations has been recently performed (4).
Transonic shock-free compressor cascade design with
viscous/inviscid interaction was done even earlier (5).
Nevertheless, that work was based on a hodograph
transformation technique that often exhibits airfoil
contour closure problems.

Sobieczky's fictitious gas concept (6) employed
in the present work does not have closure problems,
because the shock-free design starts from a given
realistically shaped cascade airfoil contour.

COMPUTATIONAL GRID GENERATION

Due to the aforementioned sensitivity of tran-
sonic flows to small changes in cascade airfoil shape
it is very important to apply exact boundary condi-
tions, precisely at the surface of each airfoil. This
can be easily accomplished by using boundary fitted
(or boundary conforming) computational grids. Because
of the periodic character of the cascade flow field it
is desirable to have a geometrically periodic compu—
tational grid. Then periodicity conditions can be
simply and exactly enforced without interpolating for
data at the periodic grid points. When a boundary
layer displacement thickness is added to the cascade
airfoil contour, it is also desirable that the com-
putational grid conform with the "open trailing edge"
and the trailing wake.

A computational grid of the periodic C-type (7)
offers all of the aforementioned advantages. C-type
grids can be generated so that grid lines of the two
basic families intersect at right angles. This is
somewhat complicated and time consuming. Because a
finite area technique will be used for the flow com-
putations in this work, the grid does not have to
possess strict orthogonality. The following technique
offers an economical way to generate such cascade
grids.

A periodic strip of the cascade flow field is con-
formally mapped onto a unit circle which is then con-
formally transformed onto a finite length strip. The
airfoil contour thus maps onto a deformed unit circle
and consequently onto an irregular lower boundary of
the strip. With increasing cascade stagger angle the
strip assumes an increasingly distorted rhomboidal
shape. Such an irregular domain is then transformed to
a rectangular computational plane using separate non-
linear coordinate shearing and stretching transforma-
tions. This exceptionally fast and simple cascade grid
generation technique has already been extended to three-
dimensional realistic geometries (8,9).
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THE GLOBAL GRID GENERATION/TRANSFORMATION
SEQUENCE

FIG. 1

The .global transformation sequence is sketched in Fig.
1 where the complex mapping functions are (7)

w = ;LE + %E-{eiB[ZBSinB + 2cosB in @%g%ﬁ)]
+ (4nz - im} (1)
and
5 1+z,.1/2
Z = [4n (1_2)] (2)

An example of a C-type grid for a realistically shaped
compressor cascade with included wake is shown in Fig.:
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C~TYPE GRID FOR A STAGGERED COMPRESSOR CAS-
CADE WITH INCLUDED WAKE

FIG, 2

FLOW ANALYSIS OF EXISTING CASCADES

As already mentioned, the mathematical model for
the flow field dynamics used in this work is the full
potential equation (10)
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It is easily shown that this second-order quasi-
linear partial differential equation can be rewritten
in its most concise (canonical) form as (10,11)

pl(1 - M2)¢SS + ¢nn} =0 (4)

where (s,n) is the cartesian coordinate system locally
aligned with the streamline direction s. Eqs. (3) and
(4) represent two nonconservative forms of mass con-
servation

v . (oa) = (ou)x + (ov)y = 0 (5)

for planar, steady, homentropic, irrotational flow of
an inviscid, ideal fluid. Eq. (5) rather than Eq. (3)
or Eq. (4) should be satisfied in transonic shocked
flow computations because Eq. (5) is in the fully con-
servative (divergence free) form and as such it accepts
discontinuities in its solution. These discontinu-
ities must not generate any vorticity in the flow
field. Those isentropic shocks are characterized by
the fact that they satisfy mass conservation, but do
not satisfy the momentum equation. Therefore the
strengths and locations of the isentropic shocks
differ (2) from strengths and locations of Rankine-
Hugoniot shocks. Eq. (5) is a steady-state equation.
For the purpose of constructing an iterative scheme
for its numerical solution Eq. (5) needs to be (at
least artificially) time dependent (11,12). Besides,
it is important to note that the nonconservative
equivalents of Eq. (5) (that is, Eq. (3) and Eq. (4))
change their basic character from elliptic to hyper-
bolic form as the flow locally changes from subsonic
to supersonic respectively. These two basic types of
partial differential equations have their specifically
shaped local domains of dependence. In order to
numerically mimic these analytic domains of dependence
we use type-dependent (13) finite differencing applied
to second derivatives of ¢ only.

Thus, at all the grid points of the discretized
flow field where the flow is locally subsonic we are
actually solving

¢; E 2¢x¢ E f; E
ol - Do, - =Sz o, + (L= Do 1 +
[Cadyp + Coby + Cst 1} =0 (6)

Superscript E designates central differencing used,
while the mixed space-artifical time terms are formed
from the combination of old and new values of ¢ after
each iterative sweep through the flow field.

At those grid points where the flow is locally
supersonic we use upstream differencing: The word
upstream having its literal meaning that is obvious
from the form of the equation actually being discre-
tized at the supersonic points
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Superscript H here designates upstream differencing
and the terms & and n are the artificial or numerical
viscosity terms introduced to cancel the error intro-
duced by upstream rotated differencing (11) applied
to ¢gg term only. Note that Eq. (7) can be rewritten
in its partially conservative form as

Pl ™ + &M, + 1(en® + a1+
[S16,, + 820  + Cst 1} =0 (8)

After a large number of iterations the artificially
time dependent terms will vanish. The artificial
viscosity or dissipation terms & and n tend to zero
with the refinement of the computational grid if they
are introduced in a fully conservative form. This
should guarantee the ability of the numerical scheme
to uniquely capture the isentropic shocks (14). Never-—
theless, it has been observed by the authors of this
work as well as by other researchers (15,16,17) that
the uniqueness of the isentropic shock strength and
location are not fully guaranteed by this numerical
scheme, Further research into the acceptable forms
for £ and n artificial dissipation terms is still
necessary.

The finite area technique (14) used in this work
actually represents finite differencing performed in
a uniformly discretized rectangular (Fig. 1) computa-
tional plane (X,Y). Besides transforming the compu-
tational grid from the physical plane (x,y) to the
computational plane (X,Y) it is necessary also to
transform the governing equation and the boundary con-
ditions, This is easily done using the contravariant
velocity vector component notation

[0) XX Xy -1 u
= 9)
v Yx Yy v

Then the mass conservation equation (with artificial
dissipation included) in its steady conservative form
becomes

i
o
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where
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The boundary condition on the airfoil surface then be-
comes

Vv=20 (12)

Uniform flow conditions are enforced at the upstream
and downstream flow field boundary.

SHOCK-FREE REDESIGN OF EXISTING CASCADES

Isentropic compression shocks are possible only
when a locally hyperbolic full potential equation just
ahead of the shock changes to a locally elliptic full
potential equation just behind the shock., It follows
that for an isentropic shock to exist at all it is
absolutely necessary that the full potential equation
be at least locally of a hyperbolic type. Hence for
an isentropic shock not to exist at any point in a
flow field the problem is to be formulated so that the
governing full potential equation never becomes hyper-
bolic at any point in the flow field.

This is obviously not possible if isentropic
relations for the speed of sound
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and for the fluid density

P,
_is  _ éftl ¥-1 M2)1/(Y"l) (14)
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are used at every point of the flow field. But, if
one uses isentropic relations (Eqs. (13) and (14)) only
at the points where the flow is locally subsonic (in-
cluding the locally sonic flow, that is, M, = 1.0) and
then switches to certain non-isentropic (fictitious)
relations whenever the flow is locally supersonic, the
governing full potential equation will remain ellip-
tic and the shockless flow conditions will be satis-
fied at every grid point of the flow field. This is
the basic idea behind Sobieczky's fictitious gas con-
cept (6) that has successfully been applied to shock-
free flow field redesign of existing shocked tran-
sonic isolated airfoils (18), isolated wings a9,
two~dimensional compressor cascades (1,2,3) and quasi-
three-dimensional compressor cascades (20).

Analytic expressions that could be used for the
calculation of fictitious density and fictitious speed
of sound are not completely arbitrary. They must
satisfy a number of general constraints (1,2) in order
to assure that the full potential equation will retain
its elliptic character even inside the supercritical
zones. The most important condition that an analytic
function for the fictitious density must satisfy is
that it maintains (continuously) the elliptic charac-
ter of the full potential equation. The borderline
between the hyperbolic and elliptic character of the
full potential equation is characterized by the para-
bolicity (sonic) flow condition, that is,
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The domain of possible analytic expressions for
the ficitious density is shown in Fig. 3.
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FIG. 3 ISENTROPIC DENSITY (FULL LINE), PARABOLIC
LIMIT (DOTTED LINE) AND FICTITIOUS DENSITY
DOMAIN (SHADED REGION)

In the present work we used the following expression

p
oo L+ - Dep - 1) 2D
*

(16)

Note that when the input parameter P = 1, Eq. (16) is
equal to Eq. (15)for M, = 1. That is, flow parameters
iteratively calculated at the points on a sonic line
are correct because they satisfy not only fictitious
relations, but also exact isentropic relations. Fic-
titious speed of sound can be found from the general
expression (1,2,21)
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In such a way we determined a sonic line shape
that is compatible with a shock-free flow field. The
final question is: what is the new shape of the air-
foil in the cascade that will produce such a flow
field.

Subsonic portions of the flow field are already
correctly computed because the isentropic relations
(Eqs. (13) and (14)) were used there. Hence, only the
portions of the airfoil contour that are covered by
the supersonic flow need to be modified. The sonic
lines and the subsonic portions of the flow field are
not to be altered if this modification is performed
correctly.

Each supersonic zone is bounded with a sonic line
and a part of the airfoil surface. If correct (is-—
entropic) relations are used throughout the flow field
the shape of the boundaries of each supersonic zone
will have to be changed to accommodate the ideal fluid
(Eqs. (13) and (14)) rather then the fictitious fluid
(Egs. (16) and (17)) flow. Sonic lines need to be
kept intact in order to secure an entirely shock-free
flow field. This means that the airfoil shape must
be changed in each region where it is covered by the
local supersonic zone.

Using isentropic relations inside each supersonic
zone will result in an initial-value problem governed
by a strictly hyperbolic full potential equation. The
initial values are known on the sonic line (potential
function - hence stream function) and the problem is
most effectively solved using the method of charac-
teristics. To simplify this task even further, the
method of characteristics is performed in a rheograph
plane (6) where the full potential equation becomes
linear and the two families of characteristics are



straight, mutually orthogonal lines. Once the charac~
teristics integration is numerically performed inside
each supersonic zone, the new airfoil contour is de-
“ermined from the condition that the stream function
ast have the same value at every point of the airfoil
contour,

When a check-up analysis computation is performed
on such a partially redesigned cascade of airfoils
(using now isentropic relations at every point of the
flow field) the resulting sonic lines should be iden-
tical with the sonic lines that were obtained with the
fictitious relations (Eqs. (16) and (17)) in super-
sonic regions and the original cascade airfoil shape.

BOUNDARY LAYER EFFECTS

Different concepts exist for an effective treat-
ment of the interaction between viscous boundary layer
and inviscid outer flow. The present work utilizes
the straightforward boundary layer displacement thick-
ness as an effective airfoil surface displacement
parameter. A different approach utilizes a semi-in-
verse method (22) where the boundary layer is calcu-
lated from a prescribed streamwise gradient of the
displacement thickness. The inviscid flow field is
then recomputed with such a modified airfoil shape
thus completing one iterative cycle of the global
viscous/inviscid computation loop.

In this work the computational procedure starts
with an initial guess (23) for the displacement thick-
ness

N E

X, BLn
§ =c¢ I Cain (C) (18)
n=1

The displacement thickness, 5* , is normally
‘ded to the airfoil contour and the resulting shape
w. analysed by the full potential (inviscid) part of

the computer code (24). With the output from the in-
viscid computation the boundary layer displacement
thickness is recomputed using Rotta's integral dissi-
pation method (25,26) code. This code solves simul-
taneously, von Karman's momentum equation

a6 e[l{iz_ flg": + L d_p":] = Eli (19)
ds Q ds p ds 2 {
e e

and the energy equation

* dQ dp
dé * 3 e 1 e
= = —= 4 -y) — —E71 =
s T ° [Qe s (2-v) o, s ] Cp (20)

while utilizing several additional relations deter-
mining H, the shape factor; Cg , the skin friction
coefficient; and Cp , the dissipation coefficient’

If the boundary layer thickness values resulting from
this code are found to be close to the analytically
obtained values (Eq. (18)), the latter are then sub-
tracted (normally) from the thickened cascade airfoil
contour and the resulting airfoil shape should be the
one that can be machined.

RESULTS

A cascade of compressor-type airfoils was gen-
erated using an analytic function (24) and an analyt-
ically controllable "bump" was added on the suction
surface. The initial guess for the boundary layer

‘placement thickness function was obtained from Eq.

p—

(18) by choosing suitable parameters corrected iter-
atively,
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BOUNDARY LAYER DISPLACEMENT THICKNESS ON
UPPER AND LOWER SURFACE OF THE CASCADE AIR-
FOIL: (—) ANALYTICAL MODEL (EQ. (18)): (+)
COMPUTED AFTER FULL POTENTIAL SHOCKLESS DE-
SIGN COMPUTATION

FIG. 4

Chordwise distribution of the final displacement
thickness model is shown in Fig. 4. These values were
added to the original cascade airfoil contour and this
"thickened" shape was submitted to the shock-free rede-
sign portion of the code. Four-level computational
grid refinement was used to accelerate the convergence,
The resulting shock-free airfoil shape is shown in Fig.
5 together with the characteristics grid inside the
supersonic bubble,

ORIGINAL CASCADE AIRFOIL CONTOUR WITH A
MODELED BOUNDARY LAYER DISPLACEMENT THICKNESS
(=--) AND THE REDESIGNED SHOCK-FREE AIRFOIL
CONTOUR (—) AFTER BOUNDARY LAYER DISPLACEMENT
THICKNESS SUBTRACTION AND THE FICTITIOUS GAS
AIRFOIL CONTOUR MODIFICATION

FIG. 5

The "thickened" contour is indicated here by a dotted
line. Note that the amount of '"shaving" that was per-
formed by the shock-free redesign procedure is very
small indeed. The boundary layer displacement thick-
ness that was computed with Rotta's boundary layer code
is shown in Fig. 4. This thickness agrees well with
the modeled values except on the upper surface close to
the trailing edge where the results of the boundary
layer computation are unreliable and the displacement
is modeled on wind tunnel boundary layer measurements
(27). From Fig. 4 it can be concluded that the tran-
sition in the boundary layer occurred at approximately
46Z of the chord on the suction surface and at about

9% of the chord on the pressure surface, with a slight
separation at the trailing edge on the suction surface,
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FIG. 6 COEFFICIENT OF PRESSURE DISTRIBUTION FOR THE
REDESIGNED (SHOCK-FREE) CASCADE AIRFOIL WITH
BOUNDARY LAYER INCLUDED 8
The final plot of the coefficient of pressure distri-
bution (Fig. 6) shows that the redesigned airfoil is
really shock-free and with a heavy aft loading. The
cascade global parameters were: M__ = 0.73; g/c =
1.1; B = 27.3% a__ = 43°% Oy = 17°.
CONCLUSION
A new computer code, CAS24, has been developed ?.
and successfully applied to shockless redesign of
transonic compressor planar cascades accounting for
boundary layer effects. A computational grid of C-
type was generated in a very efficient way using ana-
. . o . 10.
lytic transformations. Inviscid flow field computa-
tions were performed using a finite area technique,
and the shock-free flow field redesign procedure
utilized Sobieczky's fictitious gas concept and the 11
method of characteristics. A boundary layer displace- :
ment thickness was analytically modeled and subtracted
from an already pre-thickened and shock-free shaved
airfoil contour, Rotta's integral method boundary layer 12
code was used for controlling the analytic model. The -
resulting airfoil surface is slightly thinner in the
region covered by the locally supersonic shock-free
flow. 13.
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