i LI T N R o WU SPUpIONIE S PRI, WINPT INrY T S

FINITE VOLUME CALCULATION OF TRANSONIC
POTENTIAI. FLOW THROUGH ROTORS AND FANS

by
bjordje S. Dulikravich*
and

David A. Caughey

FDA-80-03 March 1980

Fluid Dynamics and

Acrodynamics Program

Sibley School of
Mechanical and Aerospace Engmeenng

Cornell University  Ithaca, New York 14853

S 9 . . . .
PERPIRECIF SRNONE: VPR, &; SP--7 - TETELIE JNGR "L VN7 = R L SRR S RS AR VA S S



FINITE VOLUME CALCULATION OF TRANSONIC
POTENTIAI. FLOW THROUGH ROTORS AND FANS

by
Djordje S. Dulikravich*
and

David A. Caughey

FDA-80-03 March 1980,

“Presently a National Research Council Research Associate at NASA
Lewis Research Center, Computational Fluid Mechanics Branch, 5-9,
Cleveland, Ohio 44135



FINITE VOLUME CALCULATION OF TRANSONIC

POTENTIAL FLOW THROUGH ROTORS AND FANS

Djordje S. Dulikravich* and David A. Caughey

Sibley School of Mechanical and Aerospace Engineering
Cornell University, Ithaca, N.Y.

ABSTRACT

An analysis was carried out for steady, transonic, potential, lifting flows
through two dimensional stationary airfoil cascades and three dimensional, rota-
ting cascades mounted on doubly infinite cylindrical hubs. The exact full |
potential equation was derived in its canonical form with appropriate boundary
and periodicity conditions for these cases.

Two separate computer programs were developed which numerically solve that®
equation, allowing for arbitrary airfoil shapes and blade taper, sweep, dihedral
and twist distributions as well as for the occurrence of weak shocks. The com-—
putational domain was formed using a sequence of geometric transformations of
the physical domain resulting in a boundary fitted coordinate system.

A locally type dependent rotated finite difference scheme was coupled with
a successive line over-relaxation technique to iteratively solve the artifi-
cially time dependent generalized form of the full potential equation. The
artificial viscosity required for this shock capturing technique was added in
conservation form, while residues were defined using a non-conservative
isoparametric linear finite volume technique.

These algorithms can serve for the flow prediction about stream deflectors,
isolated propellers, hovering rotors, wind turbines, ducted fans, stators and

finned missiles.

*Presently a National Research Council Research Associate at NASA Lewis Research
Center, Computational Fluid Mechanics Branch, 5-9, Cleveland, Ohio 44135
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Introduction

The problem to be solved can be formulated in two stages. The first is the
mathematical modelling of the physical phenomena that occur in the gas flow
through rotating turbomachinery passages and through planar cascades of air-
foils representing aerodynamic deflectors or nozzles.

"fhe second part is the development of computer programs implementing the
appropriate numerical techniques that will perform the solution procedures of
these analytical models. The main objective of this work is to devise algor-
ithms that will require minimum computation time and storage. It is also desir-
able to solve a broad class of similar problems with only minor changes in the
input data, and to provide a basis for the development of new computer programs ,
that will solve even more complicated mathematical models anq be applicable to
more general configurationms. .

A# summarized in the paper of Foley (1976), the analytical models that were
developed prior to about 1950 were very simple and approximate. The main disad-
vantage of all these theories was the assumption that the fluid is incompres-
sible. The effect of compressibility, the shape and relative size of the hub
and the blade tip, and most importantly the features of the rotating cascade
flow, were accounted for by the use of empiricism.

The most recent period is one that started with the basic paper of Wu
(1952) in which he developed the exact Full Potential Equation (FPE) for an
homentropic, inviscid, nonconducting, nonradiating compressible fluid flowing
with zero absolute vorticity through rotating cascades.

The FPE is a quasiliniear partial differential equation of mixed type and
because of this nonlinearity it can exhibit weak solutions (Carrier and Pearson,
1976) containing mathematical discontinuities in the solution or its deriva-
tives. These weak solutions are acceptable when the FPE is expressed in

conservation form, because through such isentropic discontinuities the mass,
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entropy and energy are conserved, while linear momentum is not conserved in the
direction normal to such a discontinuity (Steger and Baldwin, 1972; Caughey,
1978).

The major drawback of the FPE model of the actual physical process is that
it neglects entropy variations. This means that it does not incorporate the
second law of thermodynamics and as a consequence admits both compression and
expaﬂéion discontinuities as valid parts of the solution. It is therefore
important to distinguish between such isentropic shocks and the Rankine-Hugoniot
shocks which have the property of not conserving the entropy and in such a way
discarding the physically unrealizable expansion shocks.

Because of the need for high accuracy in the application of the boundary
conditions in the case of transonic internal flows, as well as the complexity of
the Small Perturbation Equation (SPE) approximation to the FPE (as shown by Rae,
1976), ;he exact FPE was solved using a boundary fitted coordinate system in
order to apply boundary conditions without approximations.

II. Boundary Conforming Mesh

Finite difference solutions are most easily and efficiently carried out in
rectangular computational domains that are also boundary-conforming (or body-
fitted). Also, in order to avoid stability problems and to maximize the conver-
gence rate of the iterative solution, one should fry to distribute the mesh
cells in a smoothly varying fashion, while at the same time trying to cover
parts of the flow field where flow parameters exhibit higher gradients with a
finer mesh,

These requirements can be most nearly met (at least in two-dimensiomal
surfaces) by the use of a conforwal mapping of the physical flow region (x,y)
onto a rectangular computational domain (X,Y). 1In such a problem one is faced

with the unpleasant task of numerical evaluation of elliptic integrals and other
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higher order transcendental functions (Ives and Liutermoza, 1976) which is time
consuming, still not exact and often unstable.

In our case the physical space has been transformed into a computational
X,Y,2 space which does not have to be precisely orthogonal. This implies that
we do not have to map the actual flow domain conformally. Consequently, one can
think of a cascade of airfoils as being approximated by a cascade of slits of

zero thickness. An analytic function was chosen of the form

-~

~ iB, mz -18 1-mz
w e ln<;:§ + e fn T

which i1s shown (Kober, 1957) to map conformally a cascade of unit circles (each’

-

on a different Riemann sheet in the Z = x + iy plane) with .a slit in the middle
whoselendpoints are situated at z = * n (see Fig. 1) onto a cascade of slits in,
the w = x + 1y plane and spaced 2Tcos8 distance apart, where B is the stagger
angle of the cascade. This analytic function is unfortuﬁately not analytically
invertiblé except in the case of zero stagger (Garrick, 1944). Therefore it was
inverted iteratively using a simple Newton-Raphson method.

From the z-plane to the 2—plane there is one additional step, effected by

the introduction of elliptic polar coordinates (ug, v,)

£ = m cosh u, cos v,

Nn=msginh u sin v
e e

One family of these coordinates (u, = const.) is a system of ellipses that
vary in eccentricity from a slit to a circle at large distances (Spiegel, 1968).

Hence they nearly conform with the slit-circle z-plane. The other family of
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coo;dinates (ve = const.) is a family of hyperbolas orthogonal to the first
coordinate family of ellipses. The domain outside of an actual airfoil will map
onto a nearly circular domain in the z-plane, instead of onto an exact circle ag
in the case of the zero thickness slit. The subsequent introduction of elliptic
coordinates will not help to eliminate this problem entirely and one side of the
comput;tional domain will be an irregular line. In order to make it as smooth
;s possible, (thus ensuring at least locally the condition of equal curvature of
the profile and the enveloping family of elliptic mesh lines) Theodorsen (1931)
has shown that the endpoints of the slit should be positioned approximately
midway between the edges and their centers of curvature.

The easiest way to coanvert this shape into the desired rectangular shgpe is

¢

by use of the shearing transformation (see Fig. 1):

A
X = ve 3 =T+ DRD <X < T+ DRD

' u v

e -
Y s(ve) 3 0¥ <+1

The requirement of mesh orthogonality in the physical space is not absolutely
necessary in our method as it is in the methods of other researchers using
conformal transformations (Ives and Liutermoza, 1976). Therefore, the present
method is more promising for completely arbitrary 2-D and especially 3-D
configurations.

The basic idea 6f separately transforming each distorted mesh cell (Fig. 2)
from the (x,y,z) space into a computational (X,Y,Z) cube by use of the linear
Lagrangian interpolation polynomials in the closed interval (-1,+1) has been
only recently applied in finite difference methods in aerodynamics. It is

called the "finite volume technique™ (Jameson and Caughe&, 1977; Caughey and



Jameson, 1977). It combines the simplicity of finite differencing with the

geometrical versatility of the finite element technique.

Fig. 2. Trilinear Finite Volume Transformation

The trilinear function that separately maps each elementary distorted
parallelepiped from discretized (x,y,z) physical space into a separate cube of
sides X = AY = AZ = 2in the discretized computational space (X,Y,Z) can be
written in the following form.

Let each corner of the 3-D element be designated by a different value of p
where p = 1,2,...,8, and i,?,i be local coordinates within each cell, i.e., (see

Fig. 2)



Then with the isoparametricity assumption (that geometric and flow properties
are mapped within each Elementary Mesh Cell (EMC) by the same function) 1f b

stands for any of the following: x,y,z,6(x,y,z) or ¢(x,y,z), we can write

8 _ p
I b A+X DA+ 1)Q+Z2.2) .
1 p( . ) ( p )( P )

b=

The linear nature of these functions constrains the edges connecting the
corner points of an EMC to be straight lines in the physical space. This repre-
sents a simplification in the discretized treatment of the actual shape of solid
surfaces and requires higher EMC concentration in regions where the boundaries

have high curvature.

111. Mathematical Model in the (x,y,z) Space

The relative coordinate system (x,y,z) is fixed for a blade. The free-
stream is rotating at the constant angular speed |§| about the axis of rotation
x and advancing along the same axis at the constant speed U (Fig. 3).

The relative velocity Vt of fluid with respect to the propeller is:



_u..,éx )

Fig. 3. The Physical (x,y,z) Space.

Then the absolute fluid velocity V is the sum of the relative velocity Vr and

the rotational transfer velocity (5 x ;).
-> -> -5 ~ A A
VeV + (5 XT) .= ue + ve + we
r x y z

P4 2 2y1/23
where r = (y% + z¢)!/%e, is a position vector in the (y,z) rotor
plane.

In the absence of body forces, the equation for the conservation of linear
momentum in the case of the steady rotating flow of a compressible inviscid
fluid expressed in the relative coordinate system is:

- - 2+ -+ 1
e IV - - - =
V_ V),r 2T + 2@ x V) piip
where p is static pressure and p is fluid density. With the additional

assumption that the fluid is homocompositional and that it was initially

absolutely irrotational i.e., that

V x V =0
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it can be shown (Wu,v1952) that it will remain absolutely irrotational through-
out the flowfield (according to Kelvin's Theorem) only if the conditions of the

homentropic character of the flow

Vs =0

aﬁd the condition of the uniform rothalpy 1 (Vavra, 1960)

V1= ¥+ 5 TA - 2%h) -0
r r
where h is static enthalpy, are satisfied simultaneously everywhere in the

flowfield.

Under these assumptions we are able to introduce the absolute velocity

potential ¢ defined as

= Vo

<+

consequently decreasing the number of variables involved in the analytical
formulation of the problem and improving the simplicity and speed of the

computations.

The continuity equation for the rotating, steady flow is then:

2 - ->
a§-vr-(vr-3)q-o

where
1 2 2 2
-lVl-lué«wéw‘l
qr r rx ry rz2
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Its scalar form expressed in (x,y,z) physical space and written in a

quasi-linear form (Dulikravich, 1979) is then:

2

a ( z) - (uQ +v Q’yWrQ’z) =0 (1)

u_ v 4w
I, X I,y T, T »X T

where the local speed of sound is:

o’ = ai + 55;—11 (2Q__-2Q)

where K = CP/Cv is the ratio of the specific heats.

III-a. Boundary Conditions

Assuming that each fluid particle at upstream infinity has the same total '
energy in the non-rotating frame (equivalent to total enthalpy in adiabatic

processes)

v

H = h_a + 5 = const.

-y
and uniform rothalpy

l1=H - (5 x ;) . 3 = const.

it follows that

B_-I_=(4)__ - @x1)__=V

- -t

. (Qr)ée = const.
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It is easy to check that only flows with absolute velocity at upstream infinity
equal to

c
> ~ 0 .
V.= Vo) " U e, * T &

(where U__ and Ce are constants) simultaneously satisfy this irrotationality
condition and the continuity equation.

Therefore the absolute flow at upstream infinity in the general case tan be
generated by the superposition of a uniform stream in axial direction and a 2-)
potential vortex (generated, say, by an upstream stator) iq the plane perpendi-
cular to thé axial stream.

On the surface of the blade or hub the boundary condition is

V «¥Fr=0
T

where F(x,y,z) = 0 is the equation of the solid surface. In the case of a duc-

ted or shrouded propeller, boundary condition on the surface of a shroud is

Vo » Vr =0 .

In the study of two-dimensional flows, a branch cut of arbitrary shape must
be inserted in the flow field to render solutions with non-zero circulation
single-valued when using-the velocity potential. This cut is conveniently
assumed to leave the trailing edge. The finite discontinuity in the velocity

potential at the trailing edge is equal to the circulation I' of the velocity
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field. This constant discontinuity ({.e., no-jump in static pressure) is pre-
served at every point of the cut all the way to downstream infinity.

In the case of three-dimensional flow, the difficulties sssociated with the
iterative determination of the convection and roll-up of the trailing vortex
sheet are avoided by applying a linearized condition on a surface whose position
is detérminedlg priori. Note that such an arbitrarily prescribed shape of the
vortex sheet will violate the kinematic condition at the sheet (Kaiho, 1978;
Robinson and Laurman, 1965), i.e., the shape will not in general be a stream
surface and, therefore, it will not be a true contact discontinuity (Hayes,
1960).

The dynamic condition that the static pressure is continuocus through fhe
vortex sheet is approximately preserved by enforcing the jump in the potential’
at every point of the intersection of the vortex sheet and.a cylindrical cutting
surface r = const. to be equal to the difference in the potential at the .
corresponding trailing edge point.

The condition that the velocity vector is a periodic function must be
applied along the identically shaped and periodically positioned boundaries.

The reduced velocity potential G is introduced for the two-dimensional case

according to

¢(x,y) = U_ (xcosa__+ysina_ ) + G(x,y) + const.

where c__ 18 the free stream angle at upstream infinity. A similar definition

48 used in the 3-D case:

¢(x,r,8) = (U__x+ Cee) + G(x,r,9) + const.
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Then the periodicity coundition can be actually applied in terms of the reduced

potential G. In the two-dimensional case it is

G(x,y) = G(x,y+h)

and ih the three~dimensional case

G(x,r,8) = G(x,r,6+2n/B)

where B is the number of blades.

The boundary conditions at upsteam and radial infinities are: .

G(x_w,r,e) = G(x,r*m,e) =0
1]

1f the density and velocity are normalized by their values at upstream infinity,
mass conservation in two~dimensional case requires

cosa - cosa
-0

P oo q+¢ 4o ?
and one can iteratively determine U and set the boundary conditions at the

downstream infinity to be:

(G,x)+~ ® Q. co8a,Tcosa_,

Values of M_c, o__ and . must be specified for a two-dimensional

case.
Following the derivations of Okurounmu and McCune (1970) it can be shown

from the condition of zero mass flow perturbation at downstream infinity, that
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the corresponding linearized boundary condition in the three-dimensional case

is
BQ N4 BQ
(6 Jiw = 5 — [ 7 T(n d&n - ————T(x)
' () (-1 (D, 1 21(q})
I = T =
where: M_ = U_m/a__‘n
"t ™ Teip’Thub

N = t«”/rhub

]
"
<

III.2. Relative Streamline Aligned Space

The answer to the problem of nonuniqueness of the solﬁtion of FPE is the

provision of the proper domain of influence of the partial differential equation
at every mesh point. In the case when the FPE is locally elliptic (i.e., the
flow is subsonic at the point) all surrounding points influence the value of a
variable at the point in question. Therefore, central difference formulas
should be used at such a point. The correct domain of influence of the locally
hyperbolic FPE can be found by.using the method outlined by Von Mises (1958).
It consists of writing momentum, mass and energy conservation equations in an
orthogonal coordinate system (s,n,m) aligned locally with the relative velocity
vector ;; where s is relative streamline coordinate and n and m are mutually
orthogonal directions forming a plane locally perpendicular to the relative
streamlines. In three dimensions the domain of dependence is a conoid having
the relative streamline as a centerline and opening up in the upstream
.direction.

Therefore at supersonic points one should perform strictly upwind differen-

cing for the streamwise differences in order to most closely approximate the
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local shape and effect of the analytical domain of influence of the locally
hyperbolic FPE. This means that only these second derivatives of ¢ in the
(X,Y,Z) computational space that form the term ¢,ss will be backward or
upstream differenced in the case of locally supersonic relative flow. By doihg
so, we introduce a truncation error into the nmumerical evaluation of the

¢ g term, which is proportional to ¢.ass and can be thought of as
an'hitificial dissipative or viscous term. It is important to stress the fact
that we are numerically solving a nondissipative FPE. Because the physical
(molecular) viscosity is postulated to be equal to zero, the artificial viscos-
ity that has been numerically introduced has no physical counterpart. It is
more obvious if one notices that the term, ¢,sss is of the order of the

mesh size (Jameson, 1976) and as the mesh size goes to zero, the value of the ,
artificial viscosity term (if introduced in conservation form) will vanish,
giving in the limit an exact solution to the actual FPE witgout dissipation.

The FPE for three-dimensional, rotating, steady flows can be written

(Dulikravich, 1979) in its exact operator canonical form-as:

[(a%-a2) (87 ~0F )+(a*V24F=aZe" )] = 0 (2)
where all the second derivatives of ¢ with respect to X,Y,Z coordinates that are
designated by the superscipt H are approximated by retarded or backward
differences, while those designated by the superscript E are approximated by
central differences. Note that when ! = 0 (i.e., when ;r - ; and consequently
qy = q) one recovers the canonical form of the FPE for the nonrotating steady

flow obtained by Jameson (1974):

[(a®-a®)¢® +a?(VPe"-0% )1 = 0
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IV, Mathematical Model in Computational Domain

The FPE must be transformed further into the (X,Y,Z) computational space
for the purpose of the type-dependent finite-difference evaluation of its second
derivatives and consequent determination of the coefficient matrix for the

relaxation process. Let [J] represent the geometric transformation matrix

»X »Y 2
(1] = Yx Yy Yz
z'X z’Y z’z
Then
T .} : TR |
AP Cb AUD IRRPR (/N IS LS8 1A '
where {VXYZ} is a column vector form of a linear vector operator in .

(X,Y,Z) space, while {nyz} 18 a column vector of the same operator in the
physical (x,y,z) space. The determinant of [J] will be designated by D. Also,

let Byj be the elements of the symmetric matrix
T. .- -1 T,-
(8] = BTt - Tt

We further define the modified contravariant components of the relative velocity

vector in the (X,Y,Z) space as:

Ur ur 0 ¢,X
v, - D[J-I] v, - 1)[.1]’1 Qz + D[B] ¢’Y (3)
wr wr -y ¢,Z
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Then

1 2 2
¢ ss 22 (Uf-q’,xx'*vr", L 22420V 0 oy +

9

+ ZUrWr¢’xz+2Vtwr¢’Yz) +

(terms not including ) (3)
second derivatives of ¢

Also

2
Vevz = Vgyy 1(BH Vg, ) = B11%, xx*B22% vy *B33% 228150 gy *

B

terms not including
+ ZB13¢,XZ+2323¢,YZ +_(second derivatives of ¢)

(4)
Then, after premultiplying Eq. (2) by D and expressing the appropriate

variables in terms of the second derivatives of $ and collecting like terms, one

arrives at the modified FPE:

E E E E E
S, xS rv?, 75220, 225t S k2 t

E

' E E E "
T 5129 vr R (0 xRy 8yt yy) +

H E

o xy) *

B E
¥ Ryz (@ 2770 270 +Ryy (¢

H E H E
* RO b xRy (O oy, +

(terms not including ) =0 ‘ (5)
second derivatives of ¢
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This form‘will be used for the finite volume evaluation of the matrix [§] of the
correction coefficients to the potential .

The coefficients in the above equation can be determined from Eq. (3) and
Eq. (4) to be:

y o= maxf(l-azqu_); 0-}

2
Sxx a DBll—U /D

Sery ™ aZDB -v_/D

2
sZZ a DB3

S = Z(azDB

!

N

N
NN

/D

LR |

3-w
12_Urvr/D)

2
S 2(a DBl3-U£Wr/D)

S.. = 2(a’DB

RXX = -uU_/D

/D

23-err/D)

N

= -uv

RZZ = -uwr/D

= —ZuUrVr/D

sz = -ZuUrWr/D
Ryz

= -ZuVrWr/D

NH R

The conservation form of the continuity equation

el 1
[ARCARE R(C AN AN (o) ) =0

that was (in the case of non-rotating flows) used originally by Jameson (Jameson
and Caughey, 1977) for the finite volume evaluation of the residuals of the FPE
in conservation form, involved the time consuming evaluation of the local fluid

density. In order to avoid this,
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Caughey (Caughey and Jameson, 1977) wrote the continuity equation in a nondiver-

gence (nonconservative) form similar to Eq. (1). After premultiplication by
2 A
Da”/p, Eq. (1) then transforms (Dulikravich, 1979) into:

2
a (Ur,x+vr,Y+wr,Z) - (UrQ,X+VrQ,Y+wrQ,Z) =0 (7

Eq. (7) will be used exclusively for the finite volume calculation of the

residuals of the discretized form of the transformed continuity equation.

IV.2. Boundary Conditions

The blade surface (F = Y-const.) boundary condition becomes: Ve = O,
while the hub surface (F = Z-const.) boundary condition becomes: We = 0. In
the case of a ducted fan, the boundary condition on the inner surface of the

shroud is:

W= Q((z’xx’Y-x,xz,Y)z - (x’xy’Y-y,xx’Y)y)

which in the case of a cylindrical shroud as well as in the nonrotating case



becomes: W, = 0. Boundary conditions at upstream and radial infinities (in
the case of an isolated propeller) do not change during the transformation nor
do the jump conditions on the 2-D cut and 3-D vortex sheet.

The periodicity conditions in the 2-D computational space (gee Fig. 1) are:

G(X+b,0) = G(X-b,o0)

and in 3-D case:

G(X+b,0,2Z) = G(X-b,0,2)
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where

V. Numerical Solution

V.l. Artificial Time Concept

Because the FPE cannot be solved analytically for the cases studied, it was.
discretized and solved numerically using a Successive Line Over Relaxation
(SLOR) algorithm.

The 3-D steady state FPE that we wish to solve can be.written (see Eq. (2)

in the following form:

% terms not explicitly involving)
,m ' ,nn second derivatives of ¢

(A£-1)0 -6

One can consider this to be the steady state limit of the more genmeral
(Garabedian, 1956; Jameson, 1974) Artificial Time-Dependent Equation (ATDE)
(M2-1)¢ -¢ _=¢ 420.¢  +2a.¢ +
r ,8S ',mm ' ,nn 17,st 27 ,mt
+ 2.6 +c6 =2R" ‘ (8)
03 ,at »t

wvhere ¢ is a damping coefficient and R* represents a group of terms involving
neither second spatial derivatives of ¢ nor artificial time derivatives. By

using the transformation (Jameson, 1974)

the ATDE acquires a new form which is easier to analyse



2 2 *
(Mi-1)¢,ss-¢ .¢,nn.{M2_1 - u2 - a3}¢,TT+€¢,T =R

When M. < 1 the artificial time is a time-like direction and therefore
the spatial sweeping direction is completely arbitrary. When the relative flow
is locally supersonic, M, > 1. The solution of the locally hyperbolic FPE
(&ﬁich is a steady state equation) must correspond to
the steady state solution of the ATDE Eq. (8) for large values of the artificial
time. This means that the s direction (the relative streamline direction) must
be the time-like (or sweeping) direction of the unsteady problem if ome wants to

avoid the problem of ultra-hyperbolicity. The requirement that

o? > 1) (al+ad) (9)

.
mustvbe satisfied when M, > 1, i.e., that the Q) term in Eq. (8) must always
have a non-zero value. When M, = 1 this condition can be secured by the
addition of an explicit ¢,st term to the Eq. (8) as explained by Jameson
(1974). 1In the present work, artificially time dependent differencing was used
in the way suggested by Jameson (1974), who considered iteration sweeps through
the computational field as successive intervals in an artificial time.

Designating with superscript "+" the new value of the variable (i.e., one
that will be obtained as the result of the current iteration sweep through the
field), with no superscript designating the temporary value of the variable oun a
particular column during the iteration sweep, and with the superscript "o"

designating all old values (obtained after the previous iteration sweep), one

can write the new velocity potential ¢+ at the particular mesh point (i,3,k)

as

RN (10)
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where Ci,j,k is the correction to be subtracted from the potential at

the point (4,j,k) during the present {teration sweep. The use of the SLOR
technique requires introduction of a temporary or provisional value of the
potential ¢ at every mesh point on the line along which SLOR is to be applied.
The definition of such a term is

°

-%¢i,j,k+ (1-%)¢i,j,k (11)
where w {is tﬁe over-relaxation factor (Jameson, 1974).

Second derivatives of the potential function 9 that appear in Eq. (5) aref
approximated by type-dependent finite~differences. This means that all the
second derivatives designated by the superscript E contained in Eq. (5) were
approximated by the central differences as follows:

E ° + 2
@ odi,q,k " Pia1r, 3,720 5,k P1-1r, 5,10/ (B0

E
h simil i f whil
with similar expression for (¢,ZZ)i,j,k’ e

E +

+ + 2
A I R R R (12)

and

E o +

) = (IR)(¢ -¢ -
1,1,k 1+IR,J+1,k "i-IR,j+1,k |

(¢.XY

° +
-¢i+IR,J—l Dkwi‘IR,j—l ,k) / (AAXAY)
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E
with similar expressions for (¢ YZ) swhile

1,1,k
E (-] -]
“,xz)i . = QR (@y 1r, 4,041 %1-1R, § k41 ~

“®341R,9,k-101-1R, , k-1) / (42382)

where_;k = t] and JR = ] correspond to U 2 0 and V. 2 0 respectively.
Backward (or retarded) finite difference approximations were used to
evaluate the contributions to the correction matrix of all those second
derivatives of ¢ (designated with the superscript H) that were involved in
determination of the s-directional (or streamline) second derivatives of ¢ in
the case of locally hyperbolic reglons (see Eq. (3)). The finite difference |

formulas used are of the following type:

B =gy -0

+
(¢ (2¢ -¢ -2¢, .. T
At S 1,3,k 1,3,k i-IR,j,k
. ° 2
+ b5 21R, 5,k (A%
with similar expressions for (¢ YY)H and (¢ zz)H » while
’771,5,k % 4,4,k
H = (IR) (JR) + _4° .t _
@x, L T @G Pyt g
- ¢ +6, ) (13)
1,j-JR,k "1-IR,j-JR,k
with similar expressions for (¢ XZ)H' and (¢ Yz)H . Using a local
’ i,j,k ’ i3,k

(linear) von Neumann stability criterion, Jameson (1974) showed that in the 2-D

case when M. > 1 the value of the over-relaxation factor must be W = 2, Note
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that this corresponds to the requirement of zero damping in the ATDE, i.e.,
€= 0 when M, > 1. As pointed out by Jameson (1976) and Caughey (1978)
damping is necessary only in the case when M. < 1, because this is the only
way to remove the dependence of the solution on the initial guess of the
potential field. The recommended value of W for the case when M. < 11s
between W= 1.6 and W = 1.9 where larger values should be used on finer grids.

It is easy to show that

¢ : ) UD L Vb G )

= (
sSt 1+ JIF G qr qu r,Xt r,Yt r

If it is necessary to introduce an explicit term in ¢,st in order to make

the ATDE satisfy Eq. (9) (as in the case when M, - 1) and retain the s-coor-
dinate as the time-like direction, this should serve as a guid;-line for the
construetion of such a term. Also, it can be shown (Dulikravich, 1979) that the
finite difference approximation of (Mi—l)¢?ss contributes to o) the fcllowing

term:

1+ Jl+(9r7qr)5 Ur v 1

At T r
qu)( 3 )(Zi Wt

a-1) ¢

The set of nonhomogeneous, nonlinear, algebraic equations of the genmeral

matrix form:
[81{c} + {reZ} = 0

was obtained from the discretization of the FPE, where [8] is a tri-diagonél
coefficient matrix, { C } 1s the vector of the corrections to be subtracted from
the values of the potential ¢ at every point on the same mesh line and {REZ} is

the vector of the residuals of the discretized FPE at every point on the same



mesh line. It was solved semi-iteratively. The elimination method of Crout or
Cholesky (Willems and Lucas, 1968) was used to directly invert [6] for all mesh
points situated along the same mesh line. Because AX = AY=AZ = 2 the terms of
[8§) and {REZ} that were obtained from Eqs. 5,10,11,12 and 13 can be multiplied

through by the factor of 4 and written in the following form:

+ =
€04, 5-1,1"MC 5 k%0 341 1 MREZ; g = O

where the coefficients are (in their most general form)

£ = = Syy*Ryy (HIR+ESE) ((IR) TR R +IRIR,)

1
n 2(sYY + m (S)o(+szz)) +

- 2((IR) (JR)IS(Y+(IR)RXZ+(JR)RYZ) +

: 1
- ARpym2(1 + ) (R Ry )

L = = Syy*Ryy (2-IR+EFE) (IR IR R+ (IRIR )

where W = 2 in the case of locally supersonic relative flow, while the total

residual is
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= 4(a (uE +VE +wE ) -

i,j,k r,X r,Y
E E E
- OQ VAW A et

+ 4(RVISC)1 3,k +
2 ]

+ Ci_IR’j,k(-Sxx+3Rxx+(IR)(JR)RXY +

+ (IR)RXZ) +

Ci,j,k-l(-SZZ+3RZZ+(IR)RXZ+(JR)RYZ) +

+ 4B (s R )(C

1-1IR,{+1,k Ci-IR,3-1,K° T

1
* % Gy R € a1, k-17%, 5-1, k1)

Because formulas in Eq. (5) result in

b8 _4"E) - - (IR)AX($

X%, xx xxx)

i,j,k 1-IR/2,3,k

and similar expressions for other differences, one can write the artificial

viscosity contribution to the residual to be approximately:

. H ,H
(RVISC) = (f}’lx+g’Y+h’z)

vhere:
(0 4=~ %Q[Axgzan¢:fm+&,u¢:;+nxz¢:iz>li .
8y 4,k " (JR)[AY(RYX ZRYY¢ yr*Ryz? °§z ]1 1k
Mgk ™" iEEL{AZ(RZX ,2X RZY 77*2Rg50 ogz ] 9.k



This manipulation enables one to write the modified continuity equation
(see Eq. (7)) in the so-called quasi-conservative fomm (Caughey and Jameson,
1977) as follows:

2
[a (Ur,x+vr,Y+wr,Z

)-(UtQ,x+VtQ,Y+WrQ’Z) J+(RVISC) = 0

where the basic part of the conservation equation has been calculated in
noncongervative form, while the artificial viscosity is added in a conservative
form.

In the limit as the mesh size goes to zero the artificial viscosity will
vanish, but the possible discontinuities in the solution will not, in general,
be of exactly the same strength and at the same position as the weak solution of
the FPE written entirely in the conservation form (Arlinger, 1975). In certain
flow calculations it was shown that this difference is negligible (Bauer and
Korn, 1975). Caughey (1979) proved that this is the case ogly if the shock 1is
weak. Eq. (7) is satisfied numerically within each control space. Such an
Auxiliary Control Cell (ACC) 1is centered around each mesh point (see Fig. (4)
for 2-D case) i.e., it is formed of the parts of the eight (in 3-D) Elementary

Mesh Cells (EME) that meet at the same mesh point.
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Fig. 4. Auxiliary and Elementary Mesh Cells in the Two-Dimensional Case.

The present numerical scheme was adopted following Caughey (Caughey and
Jameson, 1977). It assumes that the sides of an ACC are placed halfway between
the two neighboring mesh points in each computational direction and that the
derivatives of flow and geometric’parametets on each surface of an ACC are equal
to their values at the center of the particular surface ({.e., points N,S,W and
E shown on Fig. 4. Tﬁe central point of each surface of an ACC.ié shared by the
four (in 3-D) neighboring EME. The value of the desired parameter at the center
of each face of an ACC was evaluated as an arithmetic mean of the four separate |
results calculated on the basis of the local mapping functions in each of the
four neighboring EMC. As a result, one gets the following general set of finite

difference approximations where b stands for x;y,z,f,g,h,Ur,Vr,wr,Q,c or ¢.
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® -t Do )

151,4,K 01,3,k

1
) -3 (b b

141,1,K 11,4,k 0141, 41,k -

= byl1,441,K)

1
@ ) .E(b b

+b -
’ i,j,ki% i‘loj’k i+1sj9kil

1+1,1,k
= Py1,5,ke1)
with analogous formulas for Y and Z differences.
On the solid boundaries, boundary conditions were explicitly applied by
incorporating that V. = 0 (or that V. = W, = 0 in 3-D case) directly in

Eq. 6 and Eq. 7 at boundary points.

VI. Results of the Numerical Computations.

On the basis of the previous analysis, two separate computer programs were
developed: CAS2D, which numerically solves the FPE for flows through 2-D
stationary blade rows and CAS3D which numerically solves the FPE for flows
through 3-D stationary or rotating cascades of blades mounted on a doubly
infinite cylindrical hub. These 3-D cascades can be isolated or ducted i.e.,

confined within a doubly infinite cylindrical duct.

Vvi.l. 2-D Results.

The calculations performed by CAS2D were done on three consecutive meshes
consisting of 24 x 6, 48 x 12 and 96 x 24 mesh cells correspondingly. A typical
(24 x 6) mesh is shown in Fig. 5. After the circulation converged on each mesh,
the values of the reduced potential were interpolated onto the next finer mesh

and used as an improved initial guess for the iterative solution on that mesh.
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The simplest case for which CAS2D was tested was the nonlifting steady
potential flow of an incompressible fluid (taking M_, = 0.001). A cascade
of symmetric NACA 0012 airfoils at zero angle of attack and at zero stagger
angle (B=0°) with a relatively high gap-to-chord ratio (t/c = 3.6) was tested
and the result was compared with an exact solution (Caughey (1977)) for a NACA
0012'iirf011 in free air (Fig. 6). The agreement is excellent, as it 1is in the
case of an incompressible lifting flow (Fig. 7). Here the comparison was made
with an exact result of Gostelow (1965).

In order to test the transonic capabilities of the program, a cascade of
symmetric NACA 0012 airfoils was tested at zero angle of attack (o = 0°),
zero stagger angle (B = 0°), gap-to-chord ratio t/c = 3.6 and M. = 0.8. .
Results (Fig. 8) agree very well with the calculations of Caughey (1979a) for

" the identical case.

Thé final test was for a transonic lifting case. Because of unavailability
of published test cases appropriate for the analysis using CAS2, we analyzed a
shockless cascade designed by Jose Sanz (1979) who used the Garabedian-Korn
hodograph technique. The open trailing edge of the original profile was rounded
and effect of the wake thickness was taken into account via a quasi-three-dimen-
sional flow assumptions. The agreement of the CAS2D result (Fig. 9) with that
of Sanz 1s very good (Dulikravich, 1980), especially if one considers geometric

modifications that were performed.

Results of 3~D Computer Program.

CAS3D was developed with CAS2D serving as a guideline.

The test case was chosen to be a rotor in a cylindrical doubly infinite
duct. Thé rotor consisted of 8 blades that had no taper, no- sweep or dihedral.
The local airfoil shape was NACA 0012 and the ratio of hub-to-tip radii was
0.85. The twist (stagger) angle of -4° was kept constant along the blade.

Chord length normalized by the tip radius was ¢/ry = 0.1. The axial Mach
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number at upstream infinity was (Maxial)‘¢>. 0.7465 while the relative tip

Mach number was (H:ip)_a,- 0.750. The rotor rotated at = 120 r.p.m. The
calculation was performed first on 24 x6 x 3 mesh., The values of the potential
after 167 iterations were interpolated on a 48 x 12 x 6 mesh and an additional
55 itergtiéns were performed. The results are shown in Fig. 10. Shock strengths

and positions are not very satisfactory because of the coarse mesh and the small

number of iterations used.

Conclusion

The assumptions and restrictions pertaining to the full potential flow
through 2-D and 3-D cascades were reviewed. Periodicity and boundary conditions
were derived together with a canonical form of the full potential equation. A
body conforming grid generation for cascades of airfoils based on conformal
mapping was developed.

A numerical procedure in the computational space formed by the use of
linear isoparametric local mapping functions was detailed together with the way
that residuals were calculated and an artificial viscosity introduced. Computer
programs were developed and tested using the above analysis. They were proven
to be fast, stable and reliable for both lifting and non-lifting, subsonic and

transonic flow calculations.
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FIGURE CAPTIONS

Figure 5.

Figure 6.

Figure 7.
Figure 8.
Figure 9.

Figure 10.

Typical mesh for cascade calculation (coarse mesh consisting of 24
x 6 cells). .

Incompressible solutions for NACA 0012 airfoil in solid-walled
tunnel. M_ = 0.001, t/c = 3.6; o current results; exact
solution for free-air case. )

Incompressible flow past lifting cascade. o current results;
Gostelow (1965).

Transonic flow past NACA 0012 airfoil in solid-walled tunnel.
M_= 0.8, t/c = 3.6; o current results; Caughey (1979a).

Transonic flow past shockless-design cascade. o current results
Sanz (1979).

Transonic flow past lifting rotor. (M gx1a1)_ = 0.7458, (V/nD) =
.082. o suction side; A pressure side.

(a) r/r = (.85

tip _
(b) r/rtip 1.00
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Figure 10b



