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A fast computer program, CAS22. has been develo

ped that can be used in two basic modes: 1) an analysis

mode for steady, transonic, potential flow through a given planar cascade of airfoils and 2) a design mode for

multilevel boundary-conforming computational grids and solves a full-potential equation in a fully conservative
form. The shockiess design is performed by implementing Sobieczky’s fictitious-gas elliptic continuation

concept.
Nomenclature
a = speed of sound (isentropic)
a. =speed of sound (critical)
a, =speed of sound (fictitious)
c =airfoil chord length
D =determinant: a(x,y)/3(X,Y)
g = y distance between corresponding points
on neighboring airfoils
M =Mach number (M =gq/a)
M, =critical Mach number (M, =q/a,)
M, =Mach number at upstream infinity
M, =Mach number at downstream infinity
n = coordinate direction orthogonal to streamline
P =constant in fictitious-gas relation
q = magnitude of local velocity vector
u,v = components of velocity vector in (x, y) plane
UV  =contravariant components of velocity vector in
(X, Y) plane
X,y = Cartesian coordinates in physical plane
X,Y  =Cartesian coordinates in computational plane
a,,a, =freestream angles at upstream and downstream
infinity

=cascade stagger angle

=ratio of specific heats

=angle between x axis and local velocity vector
= Prandtl-Meyer function

=isentropic fluid density

=critical fluid density

= fictitious fluid density

= velocity vector potential

=streamfunction
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I. Introduction

IN the general case of transonic cascade flow, supersonic
regions terminate with shocks. These shocks create
vorticity and generate entropy in a flowfield that was initially
irrotational and homentropic. As a consequence, the
aerodynamic drag force sharply increases (wave drag) and the

Presented as Paper 81-1237 at the AIAA 14th Fluid and Plasma
Dynamics Conference, Palo Alto, Calif., June 23-25, 1981; submitted
July 14, 1981; revision received Jan. U1, 1982. Copyright ©® American
Institute of Aeronautics and Astronautics, Inc., 1981. All rights
reserved.

*Visiting Research Scientist at NASA Lewis Research Center, Fluid
Mechanics and Acoustics Division, Computational Fluid Mechanics
Branch, Cleveland, Ohio. Presently Assistant Professor in the
Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, Austin, Texas. Member AIAA.

tSection Chief. Member AIAA.

total energy decreases, resulting in a rapid decay of the
aerodynamic efficiency of the cascade and an abrupt increase
in the aerodynamic noise level. In many experiments it has
been observed that, if the Mach number just ahead of the foot
of the shock wave is larger than approximately 1.3, the
boundary layer starts to separate, leading to complex and
potentially dangerous unsteady flow phenomena and
mechanical vibrations.

Choked flow represents yet another undesirable
phenomenon associated with transonic cascade flow. Choking
places an upper limit on the mass flow through a given
cascade. As a countermeasure the airfoils in the cascade are
often positioned farther apart, decreasing cascade solidity.
This results in a decrease in flow turning angle through the
cascade and a drop in pressure rise across the cascade.

The main objective of this work is, therefore, to eliminate
the shocks (and possibly even the choked flow) by slightly
altering certain portions of the contour of a given airfoil in the
cascade.

II. Analysis

This work is based on the fictitious-gas concept of
Sobieczky' and the full-potential, steady, transonic analysis
code of Dulikravich.? The analysis was derived extensively in
earlier works** and will be repeated here in its concise form
only.

In the case of a steady, two-dimensional, irrotational
isentropic flow of an inviscid, compressible fluid the con-
servative form of the continuity equation is

(ou) + (ov) ,=0 ()

Equation (1) can also be expressed in its nonconservative, full-
potential form

@7 @ P ¥?
”[("a—‘?)“’ﬂ“z‘J';' et (1-%)en]=0 @

The canonical operator form2S is
P(V20—Mp ) =p[(I-M?)p  +0,,]1=0 3)

where (s,n) is the locally streamline-aligned coordinate
system. .
Equation (3) represents a quasilinear, second-ordcx: partial-
differential equation of mixed elliptic-hyperbolic type.
Equation (1) accepts isentropic discontinuities in its solution.
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These isentropic shocks satisfy mass conservation
Mn‘Mb' =M£¢ (P,/Pb) (4)

where M,. and M,, are the values of M, immediately ahead
of and behind the normal shock, respectively. These isen-
tropic shocks differ from the Rankine-Hugoniot shocks
formulated as

Ma‘ Mbn =]

Table 1 shows mutual comparison between isentropic and
Rankine-Hugoniot shocks calculated for a calorically perfect
gas withy=1.4.

Freestream boundary conditions at upstream infinity and at
downstream infinity are imposed at the finite cutoff bound-
aries (Fig. 1). The assumption is that the inflow velocity
vector and the outflow velocity vector (the latter obtained
iteratively? from the global mass conservation) do not vary
along their respective boundaries. Periodicity conditions? are
enforced along the upper and lower boundaries of the flow
domain. A constant jump in the potential equal to the cir-
culation is enforced along the cut.

Equation (2) is discretized by using central differencing,
except for the points where the flow is locally supersonic. To
numerically simulate an analytically proper local domain of
dependence of Eq. (2) at supersonic points, a type-
dependent,® rotated*® finite differencing is applied to Eq. (3).
The result is

[o U =M2) ot~ p (1= M?) 05,1 +p[ V20 ~ M2pE,1 =0 (5)

Superscript H in Eq. (5) designates upstream differencing,
and superscript E designates central differencing to be used
for the evaluation of particular second derivatives.

Solution of the steady-state Eq. (3) is obtained by an
asymptotic solution to an artificially unsteady? equation

PLUI=M)p 4¢3, +C0 3 +Cprp o +Cip, 1=0  (6)

for large times, where C,, C,, and C, are coefficients.
Equation (1) is solved by using an iterative line over-
relaxation where consecutive iteration sweeps through the
flowfield are considered as steps*S in an artificial time
direction. The steady part of the residual (or error) of Eq. (6)
is always evaluated by using Eq. (1) supplemented by a
directional numerical viscosity in a continuously fully con-
servative form, thus uniquely capturing possible isentropic
shocks. Equation (5) is used for the purpose of constructing a
relaxation matrix.29

For the purpose of a finite difference evaluation of the
derivatives in Eq. (5) and a finite area® evaluation of the first
derivatives in Eq. (1), the flowfield and the governing
equations are transformed from the physical (x,y) plane (Fig.
1) into a rectangular (X, ¥) computational domain (Fig. 2) by
using local isoparametric, bilinear mapping functions.24

If the geometric transformation matrix is

(J]7= [ Xx Yx J )
Xy Yy

then the contravariant velocity components in the (X, Y) plane

are
U u ¥ x
{ }: [Ji-! =[J) I ! ®
| 4 v Py

Consequently, the fully conservative form of the continuity
equation [Eq. (1)} becomes

1
g((pDU)5+(pDV)Fy)+ B(£f§+n{fy)=o ©)
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Table 1 Rankine-Hugoniot (A1, )
and isentropic (M. , M,) shock jump relations

Ma Ma. Mb Mb‘ Mb »
1.00601 1.005060 0.99401 0.99500 0.99502
1.0120¢ 1.01000 0.98804 0.99001 0.9%010
1.01308 1.01500 0.98210 0.98502 0.$8522
1.026415 1.02000 0.97617 0.98003 0.9803%
1.03023 1.02500 0.97027 0.97504 0.97561
1.03633 1.03000 6.966¢39 0.97006 0.97087
1.04245 1.03500 0.95853 0.96508 0.96618
1.06859 1.04000 0.95269 0.96011 0.96154
1.056475 1.04500 0.96687 0.95514¢ 0.95694
1.06083 1.05000 0.94107 0.95017 0.95238
1.06713 1.05500 0.93529 0.94520 0.94787
1.07335 1.06000 0.92952 0.9402¢ 0.94340
1.07959 1.06500 0.92378 0.93528 0.93897
1.08585 1.07000 0.91806 0.93033 0.93458
1.09213 1.07500 0.91236 0.92538 0.93023
1.09843 1.08000 0.90668 0.92043 0.92593
1.10476 1.085060 0.90101 0.91548 0.92166
1.11110 1.09000 0.89537 0.9105¢ 0.91743
1.11747 1.09500 0.8897¢ 0.90560 0.9132¢4
1.12385 1.10000 0.88413 0.90067 0.90%09
1.13026 1.10500 0.87854 0.89576 0.90498
1.13670 1.11000 0.87297 0.89081 0.90090
1.14315 1.11500 0.8674¢1 0.88589 0.89686
1.14963 1.12000 0.86188 0.88096 0.89286
1.15613 1.12500 0.85636 0.87605 0.88889
1.16265 1.13000 0.85086 0.87113 0.88496
1.16920 1.13500 0.84538 0.86622 0.88106
1.17577 1.14000 0.83991 0.86132 0.87719
1.18236 1.14500 0.83646 0.85641 0.8733¢
1.18898 1.15000 0.82903 0.85151 0.86957
1.19563 1.15500 0.82361 0.84662 0.86580
1.20229 1.16000 0.81821 0.84173 0.86207
1.2089% 1.16500 0.81283 0.83684 0.85837
1.21571 1.17000 0.806747 0.83195 0.85470
1.22245 1.175060 0.80212 0.82707 0.85106
1.22922 1.18000 0.79678 0.82219 0.864746
1.23602 1.18500 0.79147 0.81732 0.84388
1.24284 1.19000 0.78617 0.81245 0.84034
1.26969 1.19500 0.78088 0.80759 0.83682
1.25656 1.20000 0.77561 0.80272 0.83333
1.26346 1.205060 0.77036 0.79787 0.82988
1.270639 1.21000 0.76512 0.79301 0.82645
1.27735 1.21500 0.75990 0.78816 0.82305
1.28434 1.22000 0.75469 0.78331 0.81967
1.29135 1.22500 0.74950 0.77847 ¢ 81633
1.29840 1.23000 0.74433 0.77363 06.81301
1.30547 1.23500 0.73917 0.76880 0.80972
1.31257 1.264000 0.73402 0.76397 0.80645
1.31970 1.24500 0.72889 0.75914 0.80321
1.32686 1.25000 0.72377 0.756432 0.80000
1.33405 1.25500 0.71867 0.76950 0.79681
1.34128 1.26000 6.71358 0.76469 0.79365
1.34853 1.26500 0.70851 0.73988 0 79051
1.35581 1.27000 0.70345 0.73508 o 78740
1.36313 1.27500 0.69841 0.73028 ¢ 786431
1.37048 1.28000 0.69338 0.72548 o0 78125
1.37786 1.28500 0.68837 0.72069 0 77821
1.38527 1.29000 0.68337 0.71591 0 77519
1.39272 1.29500 0.67838 0.71112 0 77220
1.40020 1.30000 0.67341 0.70635 ¢ 76923
1.40771 1.30500 0.66845 0.70157 0 76628
1.41526 1.31000 0.66351 0.69681 0 76336
1.642284 1.31500 0.65858 0.69204 0 76066
1.643046 1.32000 0.65366 0.68728 0.75758
1.43812 1.32500 0.64876 0.68253 0.75472
1.464581 1.33000 0.64387 0.67778 0.75188
1.45353 1.33500 0.63899 0.67306 0.764906
1.46129 1.34000 0.63413 0.66830 0 76627
1.46909 1.34500 0.62928 0.66357 0 764349
1.47693 1.35000 0.62445 0.65886¢ 0 764074
The numerical viscosity® ! involving terms
DAX
§=p(i-M?) 7 (U2ehix + UVeE,))
DAY
7I=P(1—M2) 7 (UV‘P,I:;\'y+ V2¢;yy) (10)
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Fig. 1 Planar cascade of airfoils in physical (x,y) plane.
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Fig.2 Periodic flowfield in (X, ¥) computational plane.

represents a principal part of the truncation error resulting
from the finite difference approximation of the expression

Lot =M ol —p(1 - M?) L] 1y

which appears in Eq. (5).

The computational grid in the (x,y) plane is generated by
using a sequence of simple geometric transformations? in-
corporating a single conformal-mapping function, elliptic
polar coordinates, and nonorthogonal coordinate stretching
and shearing. The uniform grid (Fig. 2) in the computational
(X, Y) plane thus remaps back into the periodic, body-fitted,
quasiorthogonal grid (Fig. 3) in the physical (x,y) plane. A
four-level, consecutive-grid refinement procedure is applied
to accelerate the iterative solution of flow equations.

All the flow parameters are nondimensionalized with
respect to the critical conditions, denoted by an asterisk, so
that the isentropic relations used for the local fluid density
and the speed of sound are!!

0 y+i y=1 )1/(7—/)
={ — - — M? 12
P 2 2 ( )
a?/al=(p/pe )1 (13)

III. Shock-Free Surface Design

Shock-free, or shockless, flow means that the fluid
decelerates from a supersonic speed to a subsonic speed not
discontinuously (shocked flow) but smoothly over a finite
distance (isentropic recompression).

Within the last decade several versions of an indirect
(hodograph) shock-free design approach based on
Garabedian’s method of complex characteristics have been
published.'? The method proved to be a powerful tool for the
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Fig. 3 Computational grid in physical (x, ) plane,

design of high-performance airfoils and cascades, but han-
dling the complicated boundary- and initial-value problems in
a four-dimensional computational space for practically in-
teresting design cases requires considerable experience. It is
therefore desirable to develop efficient direct—or nearly
direct—design methods.

This task was thought to be accomplishable by prescribing a
smooth, shock-free pressure distribution along a portion of a
given airfoil contour in a cascade and then determining a
partially new airfoil shape consistent with the prescribed
surface flow conditions. Because of the highly nonlinear
character of the transonic flow this design technique generally
does not provide an entirely shock-free flowfield."® To
completely eliminate all shocks (and the associated wave drag)
from the flowfield, a number of such designs must be per-
formed, and an optimization technique must be devised to
search for a cascade that maintains an entirely shock-free
flowfield for a specific set of flow parameters.

IV. Shock-Free Flowfield Design

To eliminate the possibility of obtaining shocks anywhere
in the flowfield, Sobieczky proposed! and successfully ap-
plied'! the concept of a fictitious-gas, shock-free design that
corresponds to an elliptic continuation? from the subsonic
flow domain into local supersonic flow domains. This design
technique uses isentropic relations for the fluid density [Eq.
(12)] and the speed of sound [Eq. (13)] only where the flow is
locally subsonic. At every point where the speed is higher than
the local speed of sound, modified (fictitious) relations are
used for the fluid density and the speed of sound so that the
governing equation remains elliptic throughout the flowfield.
Therefore, any conservative computer code capable of solving
a subcritical potential flowfield can be modified to include the
fictitious-gas concept.

It is important to point out!’ that the flowfield outside the
supersonic bubbles calculated from the fictitious-gas relations
is already the correct subsonic flowfield. It is only the
supersonic parts of the flowfield that still need to be com-
puted and from this recalculation a new portion of the shock-
free airfoil surface to be determined. Lift and drag coef-
ficients are also already design results, and they will not be
altered by the subsequent recomputation of the local
supersonic regions. The sole purpose of originally using a
fictitious gas (modified density and speed of sound relation) is
thus to determine a shape of the sonic line that is compatible
with an entirely shock-free flowfield.

In a two-dimensional planar case of a cascade of airfoils the
values of velocity potential ¢* and streamfunction ¥* on the
sonic lines are determined from the fictitious-gas calculation.
These values then serve as the initial data for the method of
characteristics’:3 to be used for recomputation of the
supersonic zones. 3

The method of characteristics, now using isentropic gas
relations {Eqs. (12) and (13)], is performed inside the triangle
ERC of a rheograph! plane (Fig. 4). The rheograph plane is
defined by the local flow angle # and the Prandtl-Meyer
function »W(M.). In this plane the full-potential equation
becomes linear'’ and the method of characteristics can be
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Fig. 4 Physical vs rheograph
plane.

applied easily because characteristics become mutually or-
thogonal straight lines. As a result of this recomputation, the
values of ¢ and y are known inside the entire domain ERC,
which involves physical and nonphysical parts of the shock-
free supersonic zone. The dividing line between these two
regions of ERC is a part of the contour of the new shock-free
airfoil. The shape of this line is determined from the condition
that ¢ =0 everywhere on the solid surface. The new shock-free
airfoil differs slightly’® from the original shocked airfoil. The
difference exists only in the regions that are wetted by the
supersonic flow. The corresponding shock-free supersonic
bubble is considerably flatter and somewhat longer than the
original shocked'® supersonic zone.

The fictitious-gas technique is not limited in application to
only two-dimensional planar problems such as a hodograph
technique; it can be successfully applied to both arbitrary two-
dimensional and three-dimensional !5 configurations. The
airfoil contour closure problem does not exist when applying
the fictitious-gas technique.

Y. Fictitious-Gas Relations
The fictitious-gas relation ps/ps is applied only in the
regions where M>1 in order to prevent the governing
equation from ever becoming hyperbolic. Nevertheless, any
arbitrary analytic expression for ps/p« is subject to several
constraints (Fig. 5). It should satisfy the first-order continuity
condition on the sonic line of the flowfield; that is,

(ﬁ (%):—1 (14)

when M= 1. Caughey recently'® pointed out that, in order to
preserve the elliptic character of the full-potential equation,
the condition

d p -1 p
—L)>——(—L) 15
dM;’(p. 2Mi N\ p. 13

must be satisfied for all values of M, greater than 1.

It is desirable to use a formula for ps/p« that includes a
single (preferably constant) input parameter P that makes the
fictitious gas more or less compressible in the supersonic
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Fig. 5 Sonic line shapes for various density relations.

regions. Such a function must not have minimum or
maximum values in the range of expected relative local Mach
numbers, because at such points the local fictitious speed of
sound a@,/a. is infinite. This can be observed if the general
continuity criterion

9 gd
—pL=exp<— g. (L;]) (16)
D= Jas q,

is used to obtain the relation for a,/a.. After taking a
logarithm and a derivative of both sides of Eq. (16) one gets a
general expression for the speed of sound of the fictitious gas

Foow e ()] o

For the purpose of guaranteeing an entirely shock-free
flowfield the values for p;/p« must always be higher than the
values required by the parabolicity condition; that is,
ps/pr =M~! (Fig. 5). The final condition for the relation
pr/pe =F(M.; P)is that it should be a very simple function
that will also produce a simple expression for a,/a.. In the
present work we use the relation

1-NT+4P(M. ~1
L ( ) (18)

D 2P

which gives

2 1-~NT+4P(M, -1
oM. (1+ { ))\/1+4P(M. =7
ai 2P

19)

VI. Results

Based on the preceding analysis, computer code!*> CAS22
has been developed and tested for the following sequence of
test cases. For the purpose of illustrating basic features of the
flow through planar cascades of airfoils the flow around an
isolated NACA 0012 airfoil in free air and the flow through a
cascade of NACA 0012 airfoils were analyzed. Airfoils in the
cascade had zero stagger angle (8=0 deg) and a gap-chord
ratio of 3.6 (2/c=3.6). The freestream angle was zero at both
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Fig. 7 An original cascade
of airfoils with superim-
posed shock-free redesigned
cascade and the corre-
sponding shock-free sonic
line shape.

upstream and downstream infinity. In the case of an in-
compressible freestream (M, =0.001) the result obtained for
the cascade did not differ from the result obtained for an
isolated airfoil.2 However, in the case of a transonic flow
(M, =0.8) the cascade effects (Fig. 6) were very significant
even for such widely spaced airfoils.

To demonstrate the applicability of shock-free, fictitious-
gas design to realistic lifting, staggered cascades, we used a
simple analytical shape generator for geometry definition of
the input airfoils. Flexible geometry definition is most useful
for parametric studies of cascades. Here we used a formula
for blade section definition

y=Ax+BxC+x* (1 -x)% [D+Ex+Fx(1-x)] (20)

with a proper choice of the parameters to control leading- and
trailing-edge radii, angles, and thickness distribution.

Figure 7 shows two neighboring blades in such a cascade
with the superimposed contours obtained from their shock-
free redesign. It can be seen that original surface modification
is very small and confined to the portion of the suction
surface covered by the supersonic flow. The sonic lines shown
in Fig. 7 correspond to these new shock-free shapes. The
original cascade is strongly shocked (Fig. 8), while its shock-
free redesigned version obtained with the design mode of
CAS22 code has smooth, shockless recompression (Fig. 9).
For this cascade the global flow and geometric parameters
were M, =038, g/c=0.85, a,=41 deg, a,=17 deg, and
B8=27.3 deg. Then the analysis mode of CAS22 was used to
verify that the designed cascade was really shock free (Fig.
10). This step is not necessary, and it served more as a test of
the accuracy of the analysis mode of CAS22, which uses first-
order artificial viscosity.

This is the first of a series of examples from a parametric
cascade airfoil shape study.!” Although the new cascade loses
shock-free properties at off-design conditions (Fig. {1), the
resulting shock is still considerably weaker than a shock on
the original airfoil. An optimum cascade for a range of
operating conditions can be obtained by combining the fic-
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titious-gas design concept with an optimization technique.

As already mentioned, computer code CAS22 is capable of
Y converting a choked, shocked cascade flowfield into an
unchoked, shock-free flowfield. To illustrate this feature, we
selected a nonstaggered cascade of NACA 0018 airfoils with a
-1.0f gap-chord ratio g/c of 1. Note that a simple one-
dimensional’! flow assumption predicts that the flow through

~leb

=le2 -

- this cascade will choke if M, >0.577. Therefore, we used the

T b F e design mode of the CAS22 code with M, =0.582 and the

Fig. 10 Analysis verification - o[- — ~—%-—" fictitious-gas parameter P=500. The resulting flowfield (Fig.
of the shock-free design. 12) was unchoked and entirely shock free.

- .2 All the calculations were performed without taking into

account viscous boundary-layer effects. For this purpose one
may use a standard boundary-layer calculation procedure
because shock/boundary-layer interaction effects do not exist
in a shock-free flow. The viscous-inviscid calculation can be
performed iteratively with a treatment of trailing-edge viscous
interaction, as has been demonstrated'® for isolated super-
critical airfoils.

VII. Concluding Remarks

An efficient and reliable computer program, CAS22, has
been developed and tested that automatically performs partial
redesign of a given airfoil shape in the cascade for the purpose
of eliminating shock waves and the associated wave drag. The
code represents an application of already known and suc-
cessfully applied numerical techniques for transonic flow
analysis and shock-free flowfield design. These techniques are
based on the finite volume and a fictitious-gas approach,
respectively. A new formula for the fictitious-gas relation,
accompanied with the related physical constraints, has been
suggested.

The computer code is entir iy self-sufficient in generating
its own multilevel boundary-: >nforming grids. The code can
operate separately as a shock-free cascade design code and
also as a general transonic cascade analysis program with the
capability to accurately capture isentropic shocks.

Fig. 11  Analysis of shock-free
airfoil at an off-design con-
dition, M, = 0.82.
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