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1 INTRODUCTION

A heat conduction problem is fully defined (well-posed) by the following: the
governing partial differential equation (elliptic for steady heat conduction and
parabolic or hyperbolic for unsteady heat conduction), the thermal properties of the
material (that is, the coefficients in the governing equation), the initial conditions
and the boundary conditions (either of Dirichlet, Neumann or Robin type), the
shape and size of the domain, and the internal heat source distribution. If any part
of this information is unavailable, the problem is under-specified or ill-posed
(inverse) [1]. This can happen in a number of practical situations.

For example, it is often difficult and even impossible to use sensors to
measure temperatures and heat fluxes on certain boundaries such as those of
combustion chambers. The placement of thermal sensors may also be impossible
because of the prohibitively small size of the domain, as is the case of a computer
chip or in the coolant flow passage of a turbine blade. Thus, in many cases, we are
forced to solve an ill-posed boundary condition problem where the size and the
shape of the domain are known, while thermal boundary conditions are unavailable
on parts of the boundary and overspecified on the rest of the boundary [2-6].

A similar type of problem arises when thermal sensors cannot be used to
evaluate heat sources in the domain because of the highly volatile environment as in
the case of a buried toxic waste site. Thus, when the heat source distribution is
partially or entirely unknown, we have to be given both temperature and heat flux
data on at least a part of the boundary in order to solve this ill-posed (inverse) heat
source problem [7-9].

Another class of inverse problems arises when the size and shape of some
parts of the domain are unknown. In order to determine the remaining boundaries
of the domain, we must know additional boundary conditions in the form of
independently specified Dirichlet and Neumann boundary conditions at the same
points of the known boundary. Thus, when the thermal boundary conditions are



overspecified on a part of the boundary and the remaining boundary is not known,

the problem is referred to as an ill-posed (inverse) shape design problem [10-26].

The unsteady inverse heat conduction problems (UIHCP) represent a
subclass of ill-posed problems which have been extensively investigated [27-31].
The UIHCP involves an estimation of the initial conditions (temperatures and heat
fluxes) or an estimation of unsteady boundary conditions [27-36] (temperatures
and heat fluxes) utilizing measured interior temperature histories. The major
concern when attempting to solve the UIHCP computationally has been with the
automatic filtering of noisy data in the discrete thermocouple measurements. The
measurement data errors, as well as round-off errors, are amplified by the typical
UIHCP algorithms. A review of the UTHCP literature reveals that the majority of
researchers use the approach where the sum of squares of the error between the
computed and measured temperatures is minimized with respect to the heat flux
components. Among others, the method of regulizers [37], discrete mollification
[38] against a suitable averaging kernel, and other filtering techniques [39] are
usually implemented in order to smooth the extrapolated heat fluxes.

Methods for the solution of ill-posed (inverse) problems are common to a
variety of engineering disciplines [40-42] and are regularly presented in the
technical journals entitled /nverse Problems and Inverse Problems in Engineering.
We will describe strictly our own efforts in developing fast and reliable algorithms
for the solution of various inverse problems arising in heat conduction using either
special non-iterative algorithms or iterative algorithms that make use of numerical
optimization as a tool of achieving solutions of de facto inverse problems.

2 THEORETICAL FORMULATION
2.1 Steady State Heat Conduction

The governing heat conduction equation for the steady-state temperature

distribution, T(x), in a solid isotropic domain Q bounded by the boundary T is
given by

Ve [k(T) VT(x)] + L(x)=0 (1)

Here, k(T) is the temperature-dependent coefficient of thermal conductivity, x is the
position vector, and L(x) is a function representing arbitrarily distributed heat
sources (or sinks) per unit volume (or per unit area in case of a two-dimensional

domain €). This quasi-linear elliptic partial differential equation can be subject to
the Dirichlet (temperature) boundary conditions on the boundary I'y,

T=T )
the Neumann (heat flux Q) boundary conditions on the boundary I';,

oT —
a—n—Q (3)

and, when a boundary is exposed to a moving fluid, the Robin (convective heat
transfer) boundary conditions on the boundary I'3



2.2 Numerical Formulation of the Heat Conduction Equation

When a partial differential equation is formulated numerically, an approximate
solution, which is, in general, not the exact solution, must be used. Therefore,
error, often called the residual, is introduced into problem. The weighted residual
statement minimizes this error by setting the weighted sum of the residuals over the
entire domain and in the boundary conditions to zero. For Poisson's equation, the
weighted residual statement [43, 44] appears as

[(77e) + ) wixy) a0 + [(o-Biw) 229 argy)
Q I,

- j (a) - q®)) wix,y) dT(y) = 0 (10)
Ty

where w(x,y) is the weighting function, x is the real space coordinate and y is the
coordinate of integration. This statement is the starting point of most numerical
formulations. The difference between them lies in how the weighting function is
formulated and what approximating function is used locally.

2.3 The Boundary Element Method

The Boundary Element Method (BEM) is based upon the Green's function solution
procedure. It is a very efficient numerical technique [43, 44] for solving linear
boundary value problems such as those governing heat conduction, elasticity, wave
propagation and electromagnetic fields. We have chosen the BEM to solve most of
our inverse heat conduction problems, because it has certain distinct advantages
over the more common FDM, FVM and FEM. The BEM is a non-iterative and
direct solution procedure which, when used for linear boundary value problems
with a small number of subdomains, is significantly faster and more robust than the
other numerical solution techniques. In addition, the analytic solution to the partial
differential equation, in the form of the Green's function, is part of the BEM
solution. Therefore, high accuracy is expected with the BEM because introducing
the Green's functions does not introduce any error into the solution.

With the BEM, the dimensionality of the problem is reduced by one order

such that the unknowns are strictly confined to the boundaries, I', of the domain,

€. This characteristic eliminates the need for the often difficult and time-consuming
task of generating an internal boundary-conforming computational grid. In the case
of inverse shape design problems where the geometry changes iteratively many
times during the solution process, this benefit is invaluable. And finally, the non-
iterative nature of the BEM eliminates stability, reliability and convergence
problems inherent to all iterative numerical methods.

2.3.1 The boundary integral equation. The BEM begins with the weighted
residual statement but is used in its weak, integral formulation. Beginning with
Green's second identity procedure, we integrate the first integral in the weighted
residual statement (Eq. (10)) by parts twice.

J(V2®)wd§z - J(V%)@dg + jaa—(jwdr— J%—‘:G)dr (a1
Q Q T r



We are now interested in the possibility of developing a more general method. The
solution corresponding to an applied potential concentrated at a point is frequently
used in boundary value problems. In the BEM, the fundamental solution, which

will be represented by ®*, replaces the weighting function, w. The fundamental
solution is a function of only the distance between the source point, y, and the
observation point, x. For the two-dimensional Laplace's equation with a unit
source applied at the coordinate y, the auxiliary Green's function solution equation
is

a’e*  14de*

+
dr? r dr

Viw + 3(x-y) = +8(r) =0 (12)

where the non-dimensional radial coordinate, r, is the distance from the source
point to the observation node, r = |x - y|/ £ . Taking into consideration that, at the

observation node, the governing equation for @* equals the Dirac delta function,
3(r), the following Boundary Integral Equation (BIE) results [43, 44]

c(x)O(x) + Jq*(x,y) O(y) dI' = J.@)*(x,y) q(y) dT" + JG*(x,y) f(y)dQ (13)
r r Q

. 00"
on .

where

(14)

The fundamental solution for the two-dimensional Laplace's equation is

®" =1In(l/r)/ 2x. When the observation node x is located on the boundary, I, the

boundary integral containing the singularity must be integrated in the sense of the
Cauchy principal value. Consequently, c(x) = 0 when x is outside the domain,

c(x) = 1.0 when x is inside the domain, c(x) = 8/21 when x is on the boundary,
where 6 is the internal angle at a corner between two neighboring boundary
elements so that c(x) = 0.5 on a smooth boundary.

2.3.2 Discretization of the BIE. The boundary, I, of an arbitrary multiply-

connected domain, €2, can be discretized into Ngp boundary elements connected

between N boundary nodes. One BIE can be constructed for every boundary node
under consideration. The BEM solution set can then be constructed by integrating

one BIE per boundary node. In addition, the domain € can be discretized into Ny¢

volume cells (or area cells if the domain Q is two-dimensional) connected between
Ntot nodes which include the N boundary nodes and Ny volume (or area) nodes.
The resulting BEM solution set contains N equations with non-dimensional

temperatures, ©, and fluxes, q, unknown on the boundary only.

Nsp Ngp Nyc
O, + qu*GdF = ZJG*qu + Zj@*fdn (15)

k=1, k=11, k=1Q



The variation of ©® and q can be assumed to be constant, linear, quadratic, etc. on
each boundary element. The points where the values of non-dimensional

temperature and flux are Oy j and g ;, are called nodes. Since the nodes must also
define the boundary discretization, the subscript k refers to the boundary element
and the j index indicates the boundary element vertices (or boundary element
endpoints).

First, we will elaborate on the discretization of two-dimensional domains,
Q, bounded by boundaries (contours), I'. We have chosen to use a linear
isoparametric representation for the boundary elements discretizing the one-

dimensional boundaries (contour lines) I" of the two-dimensional domains, Q. The
nodes on such boundary elements (contour elements) are numbered 1 and 2 and
they are at the endpoints of each boundary element, respectively. The linear
variation of the non-dimensional temperature along such a boundary element is then

1 1
0% = 2(1-8)8; + 2(1+5)8, (16
with similar statements appearing for the flux, q, and the boundary coordinates x
and y on the boundary I". The local dimensionless coordinate, &, follows the kth

boundary element from § = -1 at endpoint 1 to = 1 at endpoint 2. Then

2 2
dr = |G| g = \/(%2’) +('g_g dg = —;'\/(x2_x1)2+(}'2—)'1)2 d§ (17)

wherclf}l is the magnitude of the vector locally normal to the boundary, T.
In a similar fashion, the domain (area) cells for two-dimensional domains

will be treated as isoparametric quadrilaterals where ©1, ©,, @3, ©4 are values of
the non-dimensional temperature at the four corners of a cell.

O1.82) = Z[(1-E)(1-5,)8, +(1+8,)1-E2)0,

HI+E)(1+82)0; +(1-&;)(1+&,)0,] (18)

The origin of the §;, &, local non-orthogonal coordinate system is located at the

center of each two-dimensional quadrilateral cell so that the values of €, and &, are

either +1 or —1 at the four corners of the quadrilateral cell. The domain integral
must also be transformed using

Fi 9y ()q
aaéx aaél
dQ =|J] d&, d&, =det | -2 D o gt d 19
7] d&; d&, =det %, I, €, d&, (19)
0 0 1
! |




where |J] is the Jacobian of the geometric transformation. After substitution, the
BEM solution set (Eq. (15)) can be represented in the condensed matrix form as

[diag(c)] (®} + [h] {©} =[g] (q} + [e] {f} (20)

or in more detail as

cg 0 0 0, h1,1 hl,N ©, g1 > 82N || A1
o ool bal s o Wil o |
0 0 cyjlOy hyy - hyn |[(On gN1  BNo2N | ldan
e,1 -+ entor || D
en, - en.nror | fNToT

Since the non-dimensional temperature, ©, is single-valued, the appropriate nodal

values can be assembled together. In the case of a two-dimensional domain, €2,
each entry in the [h] matrix (Eq. (21)) has the following form

1 » )
Lj = —(1-&}————neV|x. —vy. Gl d
R e e
1 1 _1 ) )
il oVix. — v G 27
i :”12 (+8) anxi _Yj+1(§)| e 1(§)| l | dg (22)

The unit vector, n = G/ |(§|, normal to the boundary I, arises from the chain rule

00" 90" or 00" .
= — L ] V
on  oron o f 23)

It should be pointed out that each entry in the [g] matrix is kept separate because, at
a corner point on the boundary, I, two distinct magnitudes of flux appear at the
node since n is discontinuous there. In other words, at a corner, the flux on one

boundary element is different from the flux on the neighboring boundary element,
although they possess the same corner coordinates. Thus, a total of 2N fluxes

appear in the discretized form of the BIE because for two-dimensional domains, Q,
there are the same number of boundary elements as there are boundary nodes.
The development of the BIE for three-dimensional problems is identical to

the two-dimensional case except the fundamental solution is ©* = 1/4nr. The

boundary (surface), I', of the three-dimensional domain (volume), €2, can be
discretized into either triangular or quadrilateral boundary elements (surface panels).
The domain (volume) can be discretized into tetrahedral or hexahedral cells. In
three-dimensional problems, we have chosen to use isoparametric quadrilateral
surface panels and hexahedral volume cells because of their structured nature.




2.3.3 Singular integrals. The integrals hj j and gj x can be calculated using the
simple Gauss quadrature rule for all boundary elements except the two integrals
where the observation node is at one of the vertices of the boundary element being
integrated (a singularity). For two-dimensional problems with linear isoparametric
elements, these integrals can be easily computed analytically. The h;; term is

identically zero because the vectors fi and t are orthogonal over the boundary
element when the observation node is on the boundary element. The [g] integrals
(Eq. (21)) can be calculated analytically when the observation node is at vertex 1 or
at vertex 2 as follows

3 1
gLkl = %(E—IH(S)) and gy, = %(E—IH(S)) (24)

where the length of the boundary elementis s = \/ (x4 — xl)2 +(y, - y1)2 .

A similar situation arises in three-dimensional problems when the volume
cell contains a singularity at one of its vertices. Since this integral cannot be
computed analytically, an integral transformation rule is recommended [45]. A
cubic variable transformation is valid for any location of the singular point. Each

variable of integration, &y, is thus represented in terms of a new variable, Y, as

& =ay +by? +cy+d (25)

subject to the following requirements

dg,

dy

dZ,
dy2

=0 E,M)=1 E,(-)=-1 (26)

3
Here, the subscript £ assumes different values as follows: £ = 1 for contour

integration; £ = 1 and 2 for area (surface) integration; £ = 1, 2 or 3 for volume

integration. Also, E is the location of the singular point in the local coordinate
system. A solution to this problem is given by

Ty =2
1 b 3y 3y

= Cc=
1+ 372 1+ 372 1+ 372

d=-b 27

where ¥ is the value of y which satisfies &,(¥) = €, calculated by

i B e N

2.3.4 Application of boundary conditions. For a well-posed boundary
value problem, every point on the boundary is given either one Dirichlet, one
Neumann, or one Robin-type boundary condition. At the same time, the interior
heat source function must be known. The known heat source function, {f}, can be
multiplied by its coefficient matrix, [e], to form the known vector {p}. The term



[diag c] can be absorbed into the diagonal of the matrix [h] to form matrix [ﬁ].
Equation (20) then results in the following matrix form

[h] {®) =I[g] (q} + {p) 29)

The computation of the free term [diag ¢] can be simplified. Rather than computing

the geometric internal angle at the ith boundary node, the diagonal of the [h] matrix
can be computed implicitly by considering what would happen if the temperature
was constant everywhere and no heat sources were present. In this instance, fluxes
would be identically zero. The diagonal, being the only unknown term in this case,
can be computed by summing the remaining terms in the BIE so that

By = - Y by (30)

In the well-posed steady state problems the boundary conditions may be multiplied
out and carried to the right-hand-side and added to {p} to form a vector of knowns,
{F}, while the left-hand side remains in the standard form [AJ{X}. Thus, the
entire BIE method reduces to a linear algebraic system of the standard form

[AI{X]} = {F} (31)

The equation set that will result has N unknowns and N equations. It is a well-
posed system of linear algebraic equations that can be solved for the unknown
vector {X} by any appropriate matrix solver.

3 STEADY INVERSE HEAT CONDUCTION PROBLEMS
3.1 Determination of Steady Thermal Boundary Conditions

Inverse determination of unknown steady thermal boundary conditions when
temperature and heat flux data are not available on certain boundaries is an ill-posed

problem [2-6]. In this case, additional overspecified measurement data involving
both temperature and heat flux are required on some other, more accessible
boundaries or at a finite number of points within the domain. For example, if at all
four vertices of a quadrilateral cell the heat sources are known, at two vertices both

® =0@andq = q are known, while at the remaining two vertices neither © or q
is known, the BIE (Eq. (29)) begins as

hyp By By hig || € 811 %12 813 814 ||q) P
hor M2y Moz hys (1€ _fea1 B2 £23 824 |Jag| | [P2 (32)
h31 h3p h33 b3y |16, 831 232 833 834 ||q3 P3
hgr hgp hy3 hyy (e, 841 842 843 844]|qy Py

In order to solve this set, all of the unknowns will be collected on the right-hand
side, while all of the knowns are assembled on the left. A simple algebraic
manipulation yields the following set:



b2 —g12 g 814 |[©2 “hy g hyy g3 ]| & P
P22 "B M4 —epq |2 _ [“hyp g -~z ep3 ||| | [P (33)
hy —g3 h3y ~g34||94 ~h3; g31 —h33 g33|] 3 P3
hay —842 has —g44 (94 ~ha1 841 —haz 843 |93 P4

Since the entire right-hand side is known, it may be reformulated as a vector of
knowns, {F}. The left-hand side remains in the form [A]{X}. Also, additional
equations may be added to the equation set if, for example, temperature or heat flux
measurements are known at certain locations within the domain. In general, the
geometric coefficient matrix [A] will be non-square and highly ill-conditioned.
Most matrix solvers will not work well enough to produce a correct solution.

3.2 Truncated Singular Value Decomposition

There exists a very powerful technique for dealing with sets of equations that are
either singular or very close to singular. These techniques, known as Singular

Value Decomposition (SVD) methods [39, 29, 46—50], are widely used in solving
most linear least squares problems. The goal of the SVD is to choose a solution
vector {X} so as to minimize the error

E = [{F} -[A}(X)| (34)

which is the distance from the point {F} to the point [A]{X]} in the column space.
Thus, the solution vector {X} is the projection of {F} onto the subspace which the
column vectors of [A] define. Any M x N matrix [A] can be written as the product
of an M x N column-orthogonal matrix, [U], an N x N diagonal matrix [W] with
positive singular values, and the transpose of an N x N orthogonal matrix [V].

Wy 0 0
[A]l=[u]] 0 . o {[V] (35)
0 O wN

The singular values, wi,..., wy, are the eigenvalues of a matrix [A]T[A]. The
columns of [U] corresponding to the nonzero singular values, wi, make the
orthonormal set of basis vectors that span the range of [A]. The columns of [V]
corresponding to the zero singular values, wj, are an orthonormal basis for the
nullspace. If the matrix [A] is singular, then there is some subspace of {X}, called
the nullspace, that is mapped to zero, that is, [A]{X}={0}. Since [U] and [V] are
each orthogonal in the sense that their columns are orthonormal, the solution vector
can be easily found as

(X) = [VIidiag(t/ w|([U1" (F}) (36)

For a well-conditioned matrix, the singular values wj will be roughly of the
same order of magnitude. The condition number of a matrix is defined as

Wmax/Wmin. As the condition number increases, the matrix becomes more ill-
conditioned. The LU factorization and Gaussian elimination may give a formal
solution to an ill-conditioned set of equations, but the solution vector will have
highly oscillating components whose algebraic cancellation, when multiplied by the
matrix [A], gives a very poor approximation to the vector {F). Eliminating very



small singular values has the effect of removing those algebraic terms that, because
they are dominated by noise and round-off error, produce the oscillating solution
vector. In order to determine which singular values are to be eliminated, we must

choose a parameter, T, as a singularity magnitude threshold. Any singular value
that satisfies wj/Wmax < T is zeroed out. In order to zero-out a singular value, one

should simply replace the 1/wj by zero. The zeroing of a small singular value
corresponds to throwing away one linear combination from the set of equations that
is so corrupted by round-off error as to be at best useless. For each particular
problem, there is a range of threshold values where the algorithm will produce a
correct solution. A choice of the threshold outside of this range will yield another
solution vector whose direction is very nearly the nullspace vector. Since the SVD
algorithm is capable of solving non-square matrices, the number of unknowns in
the equation set need not be the same as the number of equations. Thus, virtually
any combination of boundary conditions and internal temperature measurements
will yield at least some solution.

3.3 Tikhonov's Regularization

Tikhonov regularization [37, 29] is another type of single-parameter minimization
where the solution vector {X} minimizes the weighted sum of the norm of the error
vector defined by Tikhonov as

E = [[{F} - [A}X)]| + M(X)] G7

where A is the Tikhonov's regularization parameter. We find a minimum error
norm by differentiating this equation with respect to each component of the
unknown vector, {X}, and setting the result equal to zero. After substituting the
singular value decomposition and solving for the unknown vector {X}, the
resulting formulation is as follows

(X) = [VI(IWITTW1+Am)” [(WIT[UYF) (38)

where [I] is the identity matrix. Tikhonov regularization is a generalization of least-
squares truncation, but instead of simply eliminating terms associated with small
singular values, they are weighted by a factor (1 + A/w2). A low value of A makes

the residual term [A]{X}-{F} smaller, approaching the least squares solution.
Because of the destabilizing effect of the small singular values, the solution for an
ill-conditioned matrix oscillates erratically. Larger Tikhonov regularization
parameters act as a filter to gradually reduce the effect of the singular values because

W;j/ Wmax are less than A. Thus, the optimal choice of A provides a balance
between the accuracy and the smoothness of the solution. Tikhonov suggested that

A can be found based upon knowledge of the measurement errors [29], that is, A
should be chosen when the least sum of squares lies between

[N ~42N7] 6%  and [Nr+2N7] o2 (39)

where Ny is the number of temperature measurements and 62 is the variance of
those measurements.



The level of discretization was found to have no effect on the optimum SVD
threshold value, Top; [9]. The effective range of T that produced the minimum

variance and bias for all levels of discretization was 0.004 < 1 < 0.08.

On the other hand, the level of discretization had some influence on
Tikhonov's regularization scheme. After the BEM matrices are integrated and the
singular value decomposition computed, an iterative quadratic optimization

algorithm can be employed [9] in order to determine Aopt. The value of A can be
allowed to vary while the cost function

2
FO\') = Wyar 0% T Whias (®mean - ®ana1ytic) (40)

is minimized. Here, wyar and wpias are user-specified weighting coefficients for
the variance, (529, and the bias in the non-dimensional temperature. With wyg =

Wbias = 1, the optimum Tikhonov's regularization parameter, Aopt, is usually
found in 5 to 10 computationally inexpensive iterations [9].

3.4 Results of BEM for Unknown Thermal Boundary Conditions

The accuracy and versatility of the BEM in determining the unknown steady state
temperatures and heat fluxes on the boundaries of two- and three-dimensional
multiply-connected domains is demonstrated in the following examples. Notice that
evaluation of the unknown local values of heat convection coefficient (Eq. (4)) is
trivial once the local surface temperature and normal temperature derivative are
predicted.

3.4.1 Rectangular plate and finite rod. The accuracy of the BEM as a
solution to the two- and three-dimensional steady state ill-posed problem was
verified for a rectangular flat plate and a rod having square cross section. The
rectangular plate was 6.0 m long by 1.0 m wide. The rod was 6.0 m long by 1.0 m

by 1.0 m thick. Thermal conductivity was chosen ask = 1.0 Wm™! K~ ! and
there were no heat sources, that is, L = 0. The long sides of the plate and rod were

specified to be adiabatic (-kQ = 0 W m~2) while at one end, the boundary
conditions were overspecified with a temperature of T = 300.0 K and a heat flux of

-kQ =-50.0 W m~2. The boundary at the opposite end was considered to be
inaccessible and, as such, both temperature and heat flux were unknown there. The
rectangular plate was discretized with 14 linear elements (6 per each of the two
sides and 1 on each end). The rod surface was discretized with 26 square flat
panels (6 per each of the four sides and 1 on each end). Both two- and three-
dimensional BEM numerical formulations of the UTHCP were highly successful in
computing a linear temperature field within the rod that was accurate to almost the
floating point precision of the computer. The predicted temperatures and heat
fluxes at the end of the plate and the rod (where no boundary conditions were

given) were T = 0.00001 K and -k Q = -49.99997 W m™2, respectively,
compared to the analytic solutions of T = 0 K and ~kQ=-50.0 Wm™2.

3.4.2 Annular disk. The behavior of the BEM algorithm for various
combinations of boundary conditions can be demonstrated for steady-state heat
conduction in a two-dimensional, annular, concentric circular disk with no heat



sources [2, 3]. In the well-posed (analysis or direct or forward) case of no heat
sources and constant temperatures imposed on the entire outer and inner circular
boundaries, the analytic solution for the resulting Laplace's equation for the
Kirchhoff's non-dimensional temperature is easily found as

Op)=ci1+ca2lnp 41

where p =1/ £. In our test case, the non-dimensionalized outer radius of the
annular disk was poyter = 1.2 and the centrally located circular hole had a non-
dimensional radius of pinner = 0.5. The analytic solution for a well-posed Dirichlet

analysis problem was obtained by applying @outer = 1.0 on the outer circular

boundary and éinner = 0.5 on the inner circular boundary of the annular domain.
For these parameters the analytic values of the integration constants were cj =
0.8959 and c2 = 0.5712. The corresponding analytic values of the radial non-

dimensional heat fluxes are qoyter = 0.4759 and Qinner = 1.1422. The accuracy of
our BEM algorithm in its analysis mode was verified on the same test case. The
geometry was discretized with 36 equal-length linear isoparametric boundary
elements on each outer and inner circular boundary. The BEM program predicted
the non-dimensional temperature in the entire annular domain which averaged only
a 0.1% negative bias error and 0.0001 standard deviation versus the analytic
solution.

In order to study the feasibility and accuracy of the BEM solution to the
steady inverse heat conduction problem (SIHCP), four variations of the given
problem were performed and the results obtained were compared to the analytic
solution. In all the test cases, a constant temperature was specified on the entire
outer circular boundary. At the same time, both temperature and the heat flux were
treated as unknown on the entire inner circular boundary. The test cases are
summarized in Table 1.

Test 1. The entire outer boundary was overspecified with constant flux
boundary conditions. The BEM computed the non-dimensional temperature field
within the annular domain in addition to the unknown non-dimensional
temperatures and heat fluxes on the inner boundary. The computed isotherms (Fig.
1a) for the annular solid disk demonstrate an almost perfectly symmetric result with
an average error of 0.5% in non-dimensional temperature and a somewhat
oscillating error in heat flux averaging about ~1.5%.

Test 2. The heat flux boundary conditions were overspecified on the outer
circular boundaries of the first and third quadrants only. The computed non-
dimensional temperature distribution on the inner boundary was somewhat
oscillatory (Fig. 1b), but averaged only a 0.75% error. The predicted heat flux on
the inner boundary averaged an error of about —2.0%.

Test 3. The heat flux boundary conditions were overspecified only on the
upper half of the outer circular boundary. The computed non-dimensional
temperature field is asymmetric about the horizontal centerline (Fig. 1c), but shows
a nearly perfect symmetry about the vertical centerline. The error of the predicted
non-dimensional temperature on the inner boundary peaks to 24%. The errors in
computed fluxes peak to about 40% at the point farthest from the overspecified
data.

Test 4. The heat flux boundary conditions were overspecified on the outer
boundary of the first quadrant only. The error in the predicted non-dimensional
temperature field worsens as the distance from the overspecified data increases
(Fig. 1d) and peaks to 60% at the point farthest from the overspecified data. Notice



also that the predicted non-dimensional temperature field is symmetric about the line
inclined 45 degrees and passing through the center of the circle.

Table 1 Important parameters for the annular disk SIHCP cases

Test case Number of known Number of unknown Number of
values (© and q) values (® and q) algebraic equations
1 72 72 7
2 54 90 7
3 54 90 b
4 45 09 72

N [-o= TANDQuavown ] G UNKNOWN
D |-=-TawDospecrED| O .l.. TV
b |—o— T spPeciFien e D : :'gggnso i

Figure 1 Isotherms predicted with the inverse BEM in an annular circular disk
with specified constant temperature only (triangles) and both temperature and heat
flux (full squares). Nothing was specified on the entire inner circular boundary
(circles). The over-specified boundary conditions were on (a) the entire outer
boundary, (b) the first and the third quadrant of the outer boundary, (c) the upper
half of the outer boundary, and (d) the first quadrant of the outer boundary.



Level T
8 58.3164

7 56.7609
8 55.2053
5 53.6498
4 52.0942
3 50.5387
2 48.9831
1 47.4276

Level Flux
8 -172.063
7 -172.626
[] -173.19
5 -173.753
4 -174317
3 -174.88
2 -175.444
1 -176.007

—

N

&

Figure 2 Thermal boundary conditions predicted on the surface of a spherical
cavity when temperature and heat flux were specified on the entire outer spherical
boundary and nothing was specified on the concentric spherical cavity. Isotherms
d (a) and a cube-to-a-sphere expanded grid
onal surface grid (c) and a cube-to-a-sphere

predicted with a meridional surface
(b) and fluxes predicted with a meridi

expanded grid (d) .

= (c)

T
52.154
51.607
51.06

50.513
49.966
49419
48.872
48.325

Flux

-128.678
-140.256
-151.833
-163.411
-174.989
-186.567
-198.144
-209.722




3.4.3 Sphere within a sphere. The BEM solution to the STHCP was also
exercised on a simple three-dimensional geometry consisting of a sphere of radius r
= 1.2 m with a concentric spherical cavity of radius r =0.5 m. Withk=1.0W

m™~ ' K™}, Touter = 100.0 K, Tigner = 50.0 K, and L = 0, the analytic solution is
T(r) = c1 + c2/r where ¢; = 135.72 K and ¢ = -42.86 K m. We then used
isoparametric bilinear quadrilateral panels to discretize the spherical boundaries [3].
The surface grids were used at various levels of refinements, including 8, 10, 12
and 16 boundary elements (panels) both longitudinally and latitudinally on the outer
and inner spherical boundary. The analysis version of the BEM solved for the
fluxes, Q, on the outer and inner spherical boundaries. The numerical result
contained a biased error of 2% that was concentrated at the poles for all levels of
grid refinement.

The SIHCP problem was then formulated by overspecifying the outer
spherical boundary (applying both temperature and flux from the analytic solution),
while not providing any thermal boundary conditions on the inner (cavity) spherical
boundary. The BEM-predicted temperatures (Fig. 2a) and heat fluxes (Fig. 2b) on
the surface of the spherical cavity, with the discretization of 16x16 quadrilateral
bilinear panels, illustrate biased errors up to 16% in temperature and 3% in heat flux

at the poles since the analytic solution is ~kQjpner = —171.44 W m™2. The error of
the SIHCP was the greatest at the poles because the boundary grid of bilinear
quadrilateral cells deforms to nearly triangular cell shapes adjacent to the poles.
These boundary cells behave very poorly because the approximating polynomials
are not well-behaved in these regions. In addition, it is difficult to carry out the
integration over these polar surface integrals properly due to the nature of the
singular fundamental solution. Moreover, when observation nodes are very close
to the boundary element of integration, the accuracy of the numerical quadrature
integration scheme deteriorates.

We then repeated the STHCP with a different surface grid pattern. First, a
cube was discretized with 16 bilinear quadrilateral boundary elements on each of its
six sides. A cubical hole centered within the first cube was discretized with the
same type of grid. The surface grids of both cubes were then expanded radially to a
sphere-within-a-sphere configuration. The same STHCP was then solved using our

BEM algorithm with Tikhonov's regularization parameter A = 1.0 x 10™12, This
provided a slightly better result than the SVD matrix solver for the predicted
temperatures on the surface of the spherical cavity. These results show a maximum
unbiased error in temperature of about 4% (Fig. 2c). The errors in fluxes were
quite large (Fig. 2d), maximizing to 22% at what would be the corners of the
original cubical cavity. The results did not improve or worsen for other levels of
discretization. During the expansion of the cube-within-a-cube grid into a sphere-
within-a-sphere grid the quadrilateral cells are stretched adjacent to what used to be
the corner nodes of the cubes. The BEM is sensitive to geometric distortions in
isoparametric elements. The Jacobian of the nearly triangular boundary elements
was found to be almost zero at the vertices of these elements. Other isoparametric
boundary elements such as triangles and higher-order quadrilaterals should be
attempted to remedy this problem.

3.4.4 Treatment of geometries with corners. The accuracy of the ill-posed

BEM formulation was shown (Figs. 1c—1d) to deteriorate as the amount of
overspecified data decreases and when the distance from the overspecified data
increases. We have also noticed that the accuracy of this approach deteriorates
when only Dirichlet boundary conditions are specified across a sharp corner.

In the implementation of the direct BEM for the solution of the heat
conduction equation, the heat flux at a corner is double-valued due to the non-



uniqueness of the outward normal. This fact poses a numerical problem at nodes
located at these corners. There are three variables at such nodes, the temperature
and two normal temperature derivatives, and only one boundary integral equation is
available. Dirichlet boundary conditions provide only one of the three unknowns
for each corner node. When the corner node is on an inaccessible boundary,
nothing is provided there. In these cases, one additional equation must be
provided. This condition can be satisfied using the discontinuous element
formulation [43, 44] or by developing an expression that relates the normal and
tangential temperature derivatives to a unique temperature gradient [51]. Although
these approaches work well in the analysis or well-posed problems, difficulties
arise when the ill-posed or inverse problems are encountered. So far, we have
found no universally adequate formulation for the accurate treatment of corners for
the ill-posed problem.

As an example of the properly treated comers, a well-posed problem was
constructed for the geometry of a cross-shaped hole within a square plate with f =

0. The outer boundary of the square plate was specified with Ogyer = 1.0 and the

inner, cross-shaped boundary was specified with ®inner = 0. The outer and the
inner boundary were discretized with 60 linear isoparametric equal-length boundary
elements, respectively. The results of the BEM analysis of this well-posed Dirichlet
problem (without f = 0) are shown as a plot of computed isotherms (Fig. 3a).

Next, the fluxes on the outer square boundary that were computed by the

analysis BEM solution were applied in addition to @gyger = 1.0 as overspecified
boundary conditions. This time, nothing was specified on the boundary of the
cross-shaped hole. The BEM developed a solution to this SIHCP. The predicted
non-dimensional temperature field around the cross-shaped hole appear to have
been predicted quite accurately (Fig. 3b).

0.18
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Figure 3 Isotherms predicted using BEM in a square plate with a cross-shaped
central hole. Well-posed problem (temperatures given on both entire inner and
outer boundaries) results (a) and inverse problem (temperatures and heat fluxes
given on the outside boundary and nothing provided on the boundaries of the cross-
shaped hole) results (b).



3.4.5 Two-dimensional section of a cooled rocket chamber wall. The
ill-posed BEM formulation was attempted on a realistic engineering design problem
with temperature-dependent material properties. High pressure, reusable rocket
thrust chambers encounter progressive thinning of the coolant passage wall after
repetitive engine operation [52]. This deformation is caused by high thermal plastic
deformations and recrystalization that eventually cause cracks to form in the coolant
passage wall. An engineer who wishes to reduce or eliminate the plastic strain by
reshaping the coolant flow passage may obtain experimental data such as nozzle
shroud temperatures and heat fluxes. Unfortunately, the engineer cannot obtain
data within a coolant flow passage due to the extremely low temperature of the
liquid hydrogen coolant and the small dimensions of the passages.

The hot gas wall (left boundary in Fig. 4a) was specified with —k(—Qhot =
—57.24 x 105 W m™2. The outer shroud (right boundary in Fig. 4a) heat flux was
assumed to be negligible (Qouter = 0). The shroud was overspecified with a

temperature of 'f‘oute, = 288.0 K taken from experimental measurements [52] and
there were no heat sources (f = 0). The circumferentially-periodic meridional
boundaries of the nozzle wall section (top and bottom boundaries in Fig. 4a) were

also specified to be adiabatic (9T /96) = 0.
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Figure 4 Isotherms predicted inside a circumferentially-periodic segment of a
rocket nozzle wall with a cooling channel when nothing was known on the
boundaries of the cooling channel. Results of the inverse boundary condition code
for a rectangular channel (a) and for a channel with a rounded fin (b).



The coefficient of thermal conductivity of the metal was k(T) = k, (a +bT), where

ko =3656 Wm™ ! K~l,a=1.0and b =-3.059 x 1075 K~L. The shroud was

discretized with 8, the throat section with 16, and each of the meridional boundaries
with 8 linear isoparametric boundary elements. The coolant flow passage (hole)
perimeter was discretised with 40 linear isoparametric boundary elements. The
resulting BEM formulation of the STHCP contained 48 knowns, 112 unknowns
and 80 equations. The predicted isotherms within the solid region of the nozzle
wall section are illustrated in Fig. 4a. These results [5] show a symmetry about the
radial line passing through the center of the coolant passage. Notice aiso that the
predicted temperatures are very high along the left wall of the coolant passage close
to the nozzle throat surface.

Next, a thick fin, shaped like a sine-wave, was added to the left wall [5] of
the coolant passage. The predicted isotherms for this SIHCP (Fig. 4b)
demonstrate that even a seemingly minor shape alteration can produce a si gnificant
decrease of the temperature on the hot side of the coolant passage and the nozzle
throat surface. Such a simple shape alteration can also effectively spread the
isotherms, thus reducing the thermal stress concentration. This calculation
consumed 45 seconds on a personal computer with 100MHz clock speed (or a
fraction of a second on Cray-YMP computer) although we used SVD matrix
algorithm.

3.4.6 Three-dimensional cooled rocket engine chamber. Our three-
dimensional BEM code was also exercised on a realistic engineering problem with
multiple regions having significantly different heat conductivities [6]. A three-
dimensional circumferentially-periodic segment of the already described rocket
thrust chamber wall containing a coolant passage was used as a test case for our
three-dimensional BEM code where temperatures and heat fluxes on the walls of the
coolant passage were treated as unknown. The hot gas wall was specified with a

heat flux —kQpot = —100 x 108 W m™2. The outer boundary temperature of T gyter
= 140 K was taken from experimental measurements [56]. The circumferential
periodicity of the 72 cooling passages was assumed to exist. Consequently,
meridional boundaries of the chamber wall section were specified to be adiabatic.
Similarly, front and end walls of the three-dimensional periodic chamber section
were assumed to be adiabatic. The chamber was 0.154 m long [56]. Liquid
hydrogen was assumed to have an average bulk temperature of Tamp = 50 K and

the constant heat convection coefficienth =1 x 10° Wm™2 K~ ! was specified on
the coolant passage walls. The hot throat surface was coated with a thin layer of
zirconium-oxide (k = 8.0 W m™! K~ 1). The next layer was made of nickel-
chromium (k = 23.0 W m™! K1), while the bulk of the combustion chamber was
made of copper (k = 378.0 W m™~! K™1). The outer coating layer was made of a

copper closeout (k =385.0 Wm~1K™1),
The well-posed (direct or analysis) problem was formulated first, where the
constant heat convection coefficient, hpole, Was specified on the coolant flow

passage walls, Qho[ was specified on the hot gas wall, Touter was specified on the

outer surface of the chamber, and (8T /98) = 0 on the meridional periodic
surfaces. The computed surface isotherms are depicted in Figure 5a. Then, an ill-
posed (inverse) problem was created by pretending that nothing is known on the
walls of the cooling passage, while enforcing on the hot gas surface both the

already known Qhol and the Tpe that was obtained from the analysis solution.



Similarly, overspecified data was provided at the outer surface of the chamber by

enforcing an already known T gyger and the Qqyer that was obtained from the
analysis solution. The comparison of the computed surface isotherms from the
direct (Fig. 5a) and inverse (Fig. 5Sb) BEM shows a reasonably good agreement
despite the coarse grid used in this test case and the widely disparate thermal
conductivities.

Level T
F 1923.5
E 826.567
D 746.781
[o] 669.452
B 552.454
A 491619
9 437.355
8 384.202
7 326.679
6 306.872
5 276.419
4 251.383
3 217.076
2 177.857
1 141.466
(a)
Level T
F 1923.5
E 826.567
D 746.781
[ 669.452
B 552.454
A 491619
9 437.355
8 384.202
7 326.679
6 306.872
5 276.419
4 251.382
3 217.076
2 177.857
1 141.466
(b)

Figure 5 Surface isotherms predicted on a circumferentially-periodic three-
dimensional segment of a rocket chamber wall with a cooling channel made of four
different materials: a) direct problem, b) inverse boundary condition problem



3.4.7 Annular disk with known internal heat generation. In order to
verify the accuracy of our BEM code when solving the Poisson's equation, we first
chose to solve a well-posed steady axisymmetric heat conduction problem in an
annular circular disk with radially varying heat source function [8]. Since the non-
dimensional boundary conditions and the heat generation are axisymmetric, the
analytic solution of Eq. (6) is simple to obtain as

p[ p
1
O@p) = —J' EJ-f(p) pdp|dp + cilnp + ¢, (42)
oL o

With f = constant, the analytic solution is @(p) = - f p2/4 +cilnp+cyp We

decided to use Opyrer = 0, Ojpner = 0, and f = 1.0 which results in ¢; = 0.3398 and
c2 = 0.298. The numerical BEM solution was then compared to this analytic
solution with the same circular disk geometry and well-posed boundary conditions.
Both inner and outer circular boundaries were discretized with 36 equal-length,
linear, isoparametric boundary elements and the annular domain was discretized
with 36 x 10 quadrilateral bilinear isoparametric cells. The relative errors for the
non-dimensional temperature distribution obtained with the BEM were less than
0.5% compared to the analytic solution (Fig. 6a).
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Figure 6 Results of the well-posed (squares) and inverse (triangles) BEM Poisson
equation code on an annular circular disk. Radial temperature variation compared
with the analytic results (a), and relative error of the well-posed BEM and the ill-
posed BEM (b) when nothing was known on the inner circular boundary.



Next, the boundary conditions supplied to the BEM algorithm were changed
so that they became ill-posed. The outer circular boundary was specified with

(:)outer =0 and qoyeer = —0.3168 which was taken from the analytic solution. At
the same time, nothing was specified on the inner circular boundary. A 72 x 72
BEM matrix was solved using the SVD matrix solver with a singularity threshold

parameter of T = 0.0001. The BEM code in its inverse mode was successful in
accurately predicting the unknown thermal boundary conditions on the inner
circular boundary as well as in the entire annular domain (Fig. 6b) in a single, non-
iterative run.

The algorithm was then tested against the complete analytic solution for the
same geometry [8]. The analytic distribution of non-dimensional temperature was
obtained within the annular domain with an arbitrary non-dimensional heat source

distribution, f(p,0), such that the non-dimensional temperature satisfies equation

ERC) 100 1 9%
— + ==+ =2 1 £p,0) =0 43
>  pap  p?ae? ¢.5) @)

With (:)ou[e, =0 and qjpner = 0 we can obtain an eigenfunction set written in the
form of the Helmholtz equation satisfying the homogeneous boundary conditions
for this configuration. After separation of variables and applying the single-

valuedness condition, the analytic result for the non-dimensional temperature, ©, is

O(p,6) = ZZRm(p) [A,.sinnd + B__ cosn6] (44)
n=0 m=1
where
Pouter
Rom(P = T (i —2—) — Pimer v (1, —2—) (45)
inner Yn (unm pouter) inner

Here, J, and Yy, are the Bessel functions of integer order n, and [ipm are the roots
of the characteristic equation.

Jn(um —p°“‘“jY;(um) = Ja(kam) Yn(um ——"°“‘“] =0 (46)

inner inner

The Fourier coefficients, Apm and Bpm, may be found knowing that the
eigenfunctions form an orthogonal set. For example,

2 pouwr 2x
Am = = pzinn; f P £(p,6) R (p) sin(nd) dO dp
om0 @7)
2 Pouter 27
pinneren
Bim = Tt N jp £(p,0) R, (p) cos(nB) d6 dp
T UpmNom

Pinner 0 (48)



As a test case, we used the following expression for the heat generation term

£(p,0) = . sin|:—p—pi’m+°’ n]sinﬂ (49)

Pouter — Pinner

For the well-posed (analysis) problem, the inner circular boundary non-dimensional
temperature was specified to be éinncr = 0, the outer circular boundary was kept

adiabatic, q oyter = 0, while fpax = 1.0. Both outer and inner boundaries were
discretized with 36 linear isoparametric boundary elements and the domain was
discretized with 36 x 20 quadrilateral bilinear isoparametric cells.

Thereafter, the inner boundary heat fluxes were taken from the analytic
solution (Eq. (44)) and used as overspecified boundary conditions in the ill-posed
(inverse) problem where nothing was specified on the outer circular boundary (8].
The comparison of the BEM solution of this analysis (or well-posed) problem (Fig.
7a) and the inverse problem (Fig. 7b) indicates an excellent agreement. The largest
percentage error in computed non-dimensional temperature field is less than 0.6%
and the errors in both the analysis (Fig. 7c) and inverse solution (Fig. 7d) are
nearly identical.
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Figure 7 BEM solutions of Poisson equation on an annular circular domain with
variable heat souce function: a) isotherms for a well-posed problem, b) isotherms
for an inverse problem when nothing was specified on the inner boundary, c)
contours of constant error for a well-posed problem, and d) contours of constant
error for the inverse problem when nothing was specified on the outer boundary.



3.4.8 SIHCP with internal temperature measurements. Next, given the

same annular disk geometry, only the non-dimensional temperature Ojpper = 0 was
specified on the inner circular boundary. Heat fluxes on the inner circular boundary
were treated as unknown. Non-dimensional heat source function was given as f =
1.0. Nothing was specified on the outer circular boundary. Instead, measurements
of non-dimensional temperature were used at various locations within the domain as
additional input data [8, 9]. A series of test cases were investigated for various
numbers of circumferentially equidistantly spaced thermocouples set into the

annular domain at p = 1.0 where the analytic value of the non-dimensional

temperature is @jp; = 0.0496. When only four circumferentially equidistantly
spaced internal non-dimensional temperature measurements were used, the resulting
equation set contained 76 equations and 108 unknowns. The isotherms in Figs.
8a—8d result from using 4, 6, 9 and 18 equidistantly spaced internal temperature
measurements, respectively. It can be concluded that very good results can be
obtained with our STHCP when at least 9 thermocouples are used at points within
the annular domain, while only temperature is given on only one boundary [8, 9].
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Figure 8 Isotherms predicted in an annular circular domain with a Poisson BEM
code when nothing was specified on the inner circular boundary, only temperature

was given on the outer boundary, and 4 (a), 6 (b), 9 (c) and 18 (d) equidistant
interior measurements were provided.



3.4.9 Sensitivity to measurement errors. The major concern of researchers
working on steady inverse problems is with the sensitivity of their algorithms to
errors in the boundary data. In order to verify that our technique did not amplify
the input data errors, normal Gaussian noise was introduced [5, 8, 9] into the non-
dimensional temperature boundary condition on the outer circular boundary of the
same annular region. The non-dimensional heat generation function was a
constant, f = 1.0, and the coefficient of thermal conductivity and specimen
dimensions were assumed to be accurately known. The outer circular boundary
was overspecified with the flux taken from the analytic solution. Nothing was
specified on the inner circular boundary. For the non-dimensional temperature
boundary condition on the outer boundary, a random real number, R, between 0
and 1.0 was generated using the RANF subroutine on the CRAY-YMP computer.
Using this value as the normalized probability density function, a non-dimensional
temperature boundary condition was created from the following equation

Oouter = Ope = V-2 62 In[R(8)] (50)

where (:)ave is the mean value taken as the non-dimensional temperature boundary

condition and o2 is the user-specified variance of the input data. The value of (Oave
= 0 has been chosen so that it produced a zero bias. The errors were assumed to be
additive and the same variance is prescribed for all non-dimensional temperature
measurements,

Our BEM program was then tested with a variety of input non-dimensional

temperature standard deviations, G, on the outer circular boundary. The resulting
solution matrices were solved using the SVD algorithm and Tikhonov's
regularization scheme. From the computed output variances in non-dimensional
temperatures versus the range of possible 1's and A's between 10-16 and 1.0, it can

be concluded [9] that Topt does not depend (Fig. 9a) on the input &, while kop[
depends (Fig. 9b) on the input data noise. The input standard deviations, between
0<o0<0.1, corresponding to errors from 0% up to 100% or more, yielded a

minimum output variance when the singularity threshold, Topt, was

0.04 <t <0.08. The value of Aopt was found by the iterative optimization process
described earlier.
It was also found [9] that the larger values of Tikhonov's regularization

parameter, A, yielded a greater error (bias) in the global (integrated) energy
conservation, although the amount of input standard deviation did not affect it
directly. This implies that Tikhonov's regularization introduces artificial dissipation
which affects the physics of the problem by reducing the global amount of heat

transfer. Since larger Aopt's are required for higher input variances, the results
obtained with Tikhonov's regularization become increasingly biased as the input
measurement data becomes more noisy. On the other hand, the SVD did not exhibit
this behavior. Once the threshold parameter T was small enough, the global energy

conservation became satisfied and remained unchan ged for all smaller values of t.
We conclude from these observations that the SVD technique is more robust
and reliable than Tikhonov's regularization since the latter can mislead the observer
into thinking that a highly biased result is correct because it appears to be smooth.
With the SVD, the user will immediately recognize if the chosen value of the

threshold parameter, t, is wrong since the computed temperatures and heat fluxes
will be highly oscillatory. In addition, since the correct value of integrated heat flux



is known in both well-posed and ill-posed problems, the value of Topt €an be
determined from this information after only 2-3 repetitive trials by starting with an

initial guess T < 0.1. This is an easier procedure than with Tikhonov's method
where Agp is found iteratively by simultaneously minimizing the output variance

and the bias. Even with this value of Aopt Tikhonov's method will create results
that have a non-zero bias, while the SVD approach offers a zero bias [9].
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Figure 9 Variances in the output (computed inner boundary) non-dimensional
temperatures and heat fluxes as a function of the (a) SVD singularity threshold

parameter, T, and (b) Tikhonov's regularization parameter, A, for various levels of
input standard deviation, o.



3.4.10 Temperature-dependent thermal conductivity. The ability of the
BEM analysis program to predict thermal fields in materials with arbitrary
temperature-dependent heat conductivity was verified in case of a rod 1.0 m long
with a 0.1 m by 0.1 m cross section. The rod surface was discretised with 42
square isoparametric boundary elements each measuring 0.1 m by 0.1 m. Four
sides of the rod were kept adiabatic and the remaining two opposite sides were

subject to different non-dimensional temperatures (@hot = 1.0 and (:)cold = (). The
temperature-dependent thermal conductivity can be given as a polynomial function
of the general type

k(M =ky@T ! +b+cT+d T2 +¢ T3) (51)
or, in a non-dimensional form as
K(©) = x,(A@7! + B+ CO + DO? + E®%) (52)

In the case where Ko=10,B=10and A=D=E = 0, the one-dimensional
analytic solution [53] for an arbitrary value for the coefficient C is

C ., C 2) ( C ) (2= Zhot)

—e*+0=(0, += ~[1+= Ocoa) | ——_(@,,, - O,

) + ( hot T 2®hot +2(®hot+ cold) (Zcold_zhog)( hot ld)
(53)

Figure 10 shows that the BEM results (using Kirchhoff's ‘transformation) compared
very well with the analytic solution, averaging an error of less than 0.5% for a
range of values used for the parameters C.
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Figure 10 Comparison of analytic and BEM solutions for one-dimensional steady
non-dimensional temperature distribution for different degrees of non-linearity, C,

of the non-dimensional heat conductivity coefficient, k(®) = K,(1+CO®).



4 INVERSE DETECTION OF HEAT SOURCES

The prediction of the distribution of heat sources from the measured boundary
temperatures and heat fluxes can be separated into two steps. The first step is to
formulate the well-posed (analysis) problem from the original statement of
Fourier's heat conduction law with the application of the overspecified boundary
conditions to a system of algebraic equations. The second step is the inversion of
that algebraic system. The inverse problem is, by definition, ill-posed. Therefore,
the solution procedure must incorporate a method which stabilizes the inversion.
There are several numerical methods that have been used to solve the inverse
Poisson equation. One of them, the FEM, is based on minimizing the energy
function within a volume discretized into regularly shaped elements. The potential
or temperature is expressed as a sum of piecewise continuous polynomial
functions, called basis functions. One disadvantage of the FEM is that there can be
a significant computational overhead in assembling the grid and organizing the
nodes. The FDM, which is equivalent to the FEM for a regular grid, is not readily
adapted to irregular geometries, but its simplicity decreases the overhead in
assembling the grid. The BEM has a major advantage in that it is non-iterative and
that it involves fewer nodes than does the FEM or FDM. All of the described
formulations result in a set of simultaneous linear algebraic equations for the
unknown internal heat sources. This matrix is highly ill-conditioned and, in
general, it is not square.

As earlier mentioned, the discretized form of the set of BIE's for each
boundary node can be represented in a matrix form as

[h1{©) = [g](q) + [e](f} (54)

If the boundary conditions are overspecified, that is, both ® and q are known

everywhere on the boundary, the vectors {®} and {q} can be multiplied by their
coefficient matrices to form a vector of known quantities, {F}. The system

[e]l{f} = {F} (55)

can then be solved for the unknown non-dimensional heat sources, {f}. The
matrix [e] is ill-conditioned and, if internal measurement nodes are used in the
formulation, it is not square. If N is the number of nodes discretizing the boundary

I" and Nyc is the number of nodes used to discretize the domain Q, then there will
be N equations and N+Ny¢ unknowns. The matrix can be solved using either the
SVD method or Tikhonov's regularization, but the accuracy of the procedure is
expected to decrease with the increasing number of domain nodes and with the
increasing complexity of the distribution of the heat sources.

In order to verify that the BEM is capable of finding the internal heat
generation field compatible with the given overspecified boundary data, we used the

hollow circular disk geometry described earlier with (:)outer = (:)im,er =0and f =
1.0. The resulting analytical values (from Eq. (42)) for the non-dimensional heat

fluxes were qouter = ~0.3168 and Ginper = 0.4296. These fluxes were then used as
the overspecified boundary conditions on the outer and inner circular boundaries in
order to predict the value of the heat generation field. The accuracy of the numerical
solution was determined by how the internal region was discretized. The outer and
inner circular boundaries were discretized with 36 linear isoparametric elements.
When the annular domain was discretized with 36 bilinear isoparametric



quadrilateral cells, having only one cell between the outer and inner circular
boundaries, the results were excellent. The heat generation field was predicted with
an average error less than 0.01%. Similar results were found when the heat

generation was linearly varying as f(p) = (P~ Pinner) / Pouter — Pinmer)-

But, when the domain was discretized with two or more rows of bilinear
isoparametric quadrilateral cells, the results were in error up to 30%. This is
because the resulting assembled BEM matrix had twice as many unknowns as it had
equations for the case of two rows of quadrilaterals. The highly ill-conditioned
matrix could not produce good results, even when Tikhonov regularization was
employed. The results were significantly improved [9] whenever internal
temperature measurements were included in the analysis. For example, when the
domain was discretized with two rows of quadrilateral cells, a single row of 9
known internal temperatures produced results which averaged an error of less than
0.1%. Further numerical tested have shown that whenever the temperature field is
entirely known everywhere in the domain, the resulting solution matrix, [e], is both
square and well-conditioned (Eq. (55)). After inversion of this matrix, the
unknown heat source vector {f} can be found with an accuracy comparable to the
well-posed (forward) problem, where {f} is known and the temperature field is the
objective of the computation.

5 OPTIMIZATION

The general constrained optimization problem [54, 55] can be mathematically stated
as follows: minimize the cost function F (x), where the vector of design variables is

X={X1,....Xnvar}, such that xpjn < x < Xmax While gi(x) < 0 and |h(x) < .
j i

Here, Xmin is the vector of lower limit constraints, Xmax is the vector of upper limit
constraints, gj is the set of njggn inequality constraint functions, hj is the set of necop

equality constraint functions, and € is a very small number called the constraint
thickness. There are two basic approaches to optimization; one which is based on
the gradient search and the other which uses non-gradient methods.

5.1 Evolutionary Hybrid Optimization Algorithm

A constrained evolutionary hybrid optimization scheme has been developed. This
algorithm creates sequential populations of feasible designs which evolve with each
new optimization cycle by minimizing the cost function associated with various
members of the population. There are many optimization algorithms in the open
literature and various techniques have been shown to provide faster convergence
over others depending upon the size and shape of the mathematical design space,
the nature of the constraints and where it is during the optimization process. The
hybrid algorithm incorporates three of the most popular optimization approaches:
the Davidon-Fletcher-Powell (DFP) gradient search [54] method, a genetic
algorithm (GA) [56], and the Nelder-Mead (NM) routine [57]. Each technique
separately provides a unique approach to optimization, sometimes having good
convergence and good reliability, sometimes poor convergence and good reliability,
and sometimes good convergence and poor reliability.

The DFP gradient search method is generally the most expensive method
but the convergence is both maximized and guaranteed. This algorithm is
susceptible to local minima and can get stuck on a constraint boundary. Depending
on how this procedure stalls, the optimizer switches to either the genetic algorithm
or the NM routine. The DFP improves the best desi gn in the population.



The genetic algorithm is an evolutionary approach which utilizes its random
nature to escape local minima. When the average cost function of the new
generation is not improved, the GA becomes an inefficient optimizer. This most
often occurs when its random nature is prevalent, producing several bad and
infeasible designs. The GA is then automatically switched to the NM because the
NM cheaply works upon these worst designs first. When the variance in the cost
function scores of the new population is very small, the population is beginning to
concentrate around a possible global minimum. The optimizer is then automatically
switched to the DFP because this algorithm has the ability to quickly converge on
that minimum. The GA develops a new population with each iteration, saving only
a few of the best or elitist designs unchan ged from one iteration to the next.

The Nelder-Mead is a zeroth order method that utilizes a simplex generated
by the population of previously generated designs. This algorithm is the cheapest
of the three, but it does not guarantee convergence. The existing population matrix
of the genetic algorithm and previously generated feasible designs from the gradient
search techniques is ideal, making the NM even cheaper to employ. It improves
only the worst design in the population with each iteration.

The new evolutionary hybrid scheme [58] handles the existence of
constraints in three ways; Rosen's projection method, a feasible search and random
design generation. Rosen's projection method provides search directions which
guide it tangent to active constraint boundaries. In the feasible search, designs
which violate constraints are automatically restored to feasibility via the
minimization of the global constraint functions. If at any time this minimization
stalls, a random design is generated within a Gaussian-shaped probability density
cloud about a desirable and feasible design until a new design is reached.

The feasible set of design variables from the current optimization cycle are
saved into an array called the population matrix. This population is updated every
iteration with new designs and ranked according to the value of the cost function.
As the optimization process proceeds, this population evolves because of the nature
of the optimization process. The optimization problem is completed when the best
design in the population provides a desirable target design or when the variation in
the population's design characteristics becomes very small. This usually indicates
that a global minimum has been found.

6 INVERSE SHAPE DESIGN

Steady state, nonlinear heat conduction can be modeled as a boundary value
problem where the boundary conditions of Dirichlet, Neumann or Robin type are
specified on the entire boundary of the solid object. If the thermal boundary
conditions are overspecified, that is, if both the temperature and the heat flux are
simultaneously enforced on the boundary or on a portion of the boundary, then the
problem is overspecified and the problem is ill-posed. This means that the
governing partial differential equation for the steady temperature field may not be
able to satisfy simultaneously all the thermal boundary conditions. There are two
possibilities to resolve this problem. One possibility is to determine the material
thermal properties that can vary in a very special way from point-to-point
throughout the object (the case of a thermally functional material). The other option
is to find a very special distribution of the heat source function in the object as was
demonstrated earlier. If the heat sources do not exist, the solution can still be found
if the size and shape of the object are altered in an appropriate manner. This
approach is called an inverse shape design methodology.



6.1 Inverse Shape Design Objectives

Specifically, the objective is to minimize the difference between the specified

values, 0P, and the calculated values, T, which can be either temperature or
heat flux at the overspecified boundary. The cost function, F(x), can be
mathematically formulated [17, 18] as a normalized least sum of squares

N
z(ﬁjp‘” — a2
F= (56)
Z(ﬁj"“)z + g
j=1

or as a locally normalized error at each boundary element on the overspecified
boundary

(ﬁspec _ ﬁcalc)Z

N
— ]
F(x) = Z e (57)
j=1 j

where x is the vector of design variables. Here, ¢ is a very small user-specified

parameter to avoid division by zero. The shape optimization procedure for the

inverse design of internal coolant flow passages (where the outer hot surface of the

internally cooled object is the overspecified boundary) then consists of the

following steps:

1. Specify the shape of the outer surface of the three-dimensional object.

2. Specify the desired thermal boundary condition (either temperature or heat flux)

on the outer surface of the object and on the coolant passage walls. These

thermal boundary conditions will be needed to solve the well-posed boundary

value problem.

Specify the additional thermal boundary conditions (temperature if the heat flux

was already specified there or vice versa).

Specify manufacturing constraints such as the minimum distance between the

coolant passage and the outer surface of the object.

Specify an initial guess for the internal coolin g passage geometry. These are the

design variables of the cost function and can take a variety of forms.

Using the BEM and the well-posed problem from step 2 above, the remaining

surface thermal values are computed (if surface temperature was specified in

step 2 above, than it will be surface heat flux and vice versa) at the outer or the

inner boundaries. These computed surface thermal quantities certainly differ

from the desired (overspecified) surface thermal values specified in step 3

above. A composite objective function is formed on the basis of a properly

scaled least-squares measure of the difference between the computed and the

overspecified surface thermal quantities.

7. The design variables are updated by the optimization algorithm.

8. If the optimization procedure stalls in a local minimum, the objective function is
automatically switched and the optimization is continued from step 6.

During the optimization process, local minimas can occur and halt the process

before achieving an optimal solution. In order to overcome such a situation, a

simple technique has been devised. In this approach, whenever the optimization

stalls, the formulation of the objective function is automatically switched between

any one of the possible cost functions defined earlier. The new objective function

A O



projects the problem into another function space and provides a departure from the
local minima and further convergence towards the global minimum.,

6.2 Design of Coolant Flow Passages

During the past several years, we have developed an inverse method that allows a
thermal cooling system designer to determine the proper sizes, shapes, and
locations of coolant passages (holes) in an internally cooled turbine blade [11-13,
15-20, 22-25], a scram jet strut [14], a rocket chamber wall [19, 23], etc. Using
this method the designer can enforce a desired heat flux distribution on the hot outer
surface of the object, while simultaneously enforcing desired temperature
distributions or convective heat transfer rates on the same hot outer surface as well
as on the cooled interior surfaces of each of the coolant passages. This constitutes
an overspecified inverse problem which is solved by allowing the number, sizes,
locations and shapes of the passages (holes) to adjust iteratively until the final
internally cooled configuration satisfies the overspecified thermal boundary
conditions and the governing equation for the steady temperature field. The
geometry of the coolant passages make up the design variables of the cost function.
Since the number of passages may also be a design variable, a problem arises when
computing the gradient of the objective function. Additional holes cannot easily be
added since the search should include all the possible combinations of hole location
and geometry. A simple and straightforward approach is to start optimizing with a
large number of holes (limited by computer memory and computational efficiency)
and then reduce the number of holes during the optimization procedure. The
criterion for excluding a particular hole durin g the optimization procedure is when
the hole reduces to such a small size that it has a negligible effect on the heat flux at
the outer boundary. Otherwise, the procedure is time consuming and often
terminates in a local minima.

6.2.1 Minimization of number of cooling passages. Our inverse design
methodology for the determination of the proper locations, shapes and sizes of a
given number of coolant flow passages (holes) subject to specific surface
temperatures and heat fluxes has been extended to allow the designer the freedom to
guess the required number of holes and the minimal allowable diameter of a hole.
A constrained optimization algorithm is then used to minimize the total number of
cooling holes, while satisfying user-specified hot surface temperatures and heat
fluxes. Premature termination of the optimization process due to the existence of
local minimas has been satisfactorily resolved by the automatic switching of the
objective function formulation whenever the iocal minima is detected. The
convergence criteria of the iterative process, which can be specified by the user,
was found to have a strong influence on the accuracy of the entire inverse design
optimization algorithm.

As an example involving the application of these techniques to a realistic
domain we chose a ceramically coated turbine blade airfoil (Fig. 11a) with f = 0,

Keoating = 1.0, Kpea = 21.0 (Where x = k/k,), and five circular coolant passages

(holes). Then, our BEM analysis code was run with (:)im,er = 0 specified on the

circular boundary of each hole and C:)omer = 1.0 specified on the entire outer
boundary of the turbine airfoil. The optimization process was then initiated by
guessing that there should be ten holes (Fig. 11b) with each of them having the

same éinner = 0 while the airfoil outer boundary was assigned @outer =1.0. As the
overspecified thermal boundary condition we iteratively enforced the heat flux



Qouter that was obtained by the BEM from the well-posed problem with five holes.
After 30 iterations with a constrained gradient-search DFP optimization algorithm
requiring 3775 calls to the Laplace's equation integration routine, the integrated
outer heat flux error reduced below 0.25%. The optimized solution (Fig. 11c) had
six holes. Five of them had almost the same sizes and locations as the correct
solution, while the sixth hole was still reducing to zero. This shape inverse design
consumed approximately 5000 seconds on an IBM 3090 computer.

Figure 11 Minimization of the number of circular cross-section coolant passages
inside a ceramically coated turbine blade airfoil: a) target geometry; b) initial guess,
and ¢) an almost converged final result of the inverse shape design.



6.2.2 Super-elliptic holes in a coated turbine airfoil. The shapes of the
holes can be arbitrary just like the shape of the outer boundary and the coating
thickness distribution can be arbitrary. To demonstrate this point and the effective
enforcement of the manufacturing constraints, we used [22] a realistically shaped
turbine blade airfoil having a chord length of 0.083 m and the coating thickness of

0.000415 m. The thermal conductivities were Keoating = 1.0 Wm™1 K~ 1 a4
Kmetat =23.0 Wm™! K~1. There were no heat sources, that is, f = 0. It was

assumed that the coated airfoil has three circular interior coolant flow passages

(Figs. 12a—12c and Table 2). Here, the origin of the global Cartesian coordinate
system X,y is at the geometric center of the airfoil.

Table 2 Initial and converged Lame parameters for three holes

Hole number a(m) b (m) n Xo (M) |y, (m) 0 (deg)
1 Initial guess[0.005_[0.005 2.0 |=0.02 | =0.007 51 0.0
1 Final value [0.0075 [0.005 [2.0 -0.0275| -0.0025| -40.0
2 Initial guess [ 0.005 [0.005 | 2.0 -0.01 -0.0075] 0.0
2 Final value ]0.01 0.0075 {6.0 [-0.0075 -0.01 0.0
3 Initial guess [ 0.005 0.005 ]2.0 | 0.0 -0.0075] 0.0
3 Final value [0.0125 [0.005 [2.0 | 0.0275 0.01 55.0
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Figure 12 Inverse shape design of three coolant passages in a ceramically coated
turbine blade airfoil with specified outer boundary temperatures (a) and heat fluxes
(b). The iterative convergence history of the geometry of three initially circular
passages (a) indicates the robustness of this procedure that utilizes a constrained
optimization algorithm (b). Intermediate shapes are indicated with dashed lines ©).



All boundary conditions were of the Dirichlet type with a realistic variation of
temperature specified on the airfoil outer (hot) boundary (Fig. 12a) and a constant

temperature Thole = 500.0 K specified on the walls of each of the holes. The outer
(hot) boundary of the coated airfoil was discretized with 50 linear isoparametric
boundary elements. The metal/coating interface boundary was also discretized with
50 flat panels. The boundary of each of the three coolant flow passages was
discretized with 20 linear isoparametric boundary elements. The boundary elements
were everywhere clustered with respect to the local boundary curvature. In
addition, a minimum distance of 0.0005 m between any of the holes and between
any hole and the metal/coating interface were specified as the manufacturing
constraints. The target heat flux is shown in Fig. 12b, while Fig. 12¢ depicts the
geometric evolution history at several stages during the optimization process. The
optimization was completed when the normalized hot boundary heat flux error
(using the global cost function formulation and barrier function to incorporate the
constraints) reached 1.32%. The dotted shapes (Fig. 12c) indicate the intermediate
geometries and the solid shapes indicate the final solution (not fully converged)
where the minimum allowable wall thickness constraint was honored. The initially
circular holes transformed appropriately and moved from their initial positions to
the almost correct target configuration (Fig. 12b) which would have been eventually
reached by continuing the optimization process. The entire optimization in this
inverse shape design case consumed 103 optimization cycles, 2859 calls to the
BEM analysis routine, and 12028 seconds of CPU time on an IBM 3090 computer.

6.2.3 Super-elliptic cavity within a sphere. This test case was used to
demonstrate the fully three-dimensional shape inverse design capability of the
optimization algorithm with the temperature-dependent material properties. The
geometry consisted of a unit sphere (ryye, = 1.0) with an off-centered cavity of a
three-dimensional super-elliptic shape given by

() - () ()
+ [ —=2 + =1 (58)
a b c
Seven design variables are derived from this equation: the center coordinates of the
super-elliptic cavity (x,, ¥, Z,), its semi-major axes (a,b,c) and the super-elliptic
exponent, n. The initial shape of the cavity was given as: X0=02,y,=0.2, Zy =

02,2a=03,b=04,¢= 0.5, n =4.0. The outer spherical surface and the internal
super-elliptic cavity surface (Fig. 13a) were each discretized with 64 bilinear

isoparametric quadrilateral panels. A constant temperature 'f‘ou[er = 100.0 K was

specified on the outer boundary and Tinner = 50.0 K on the inner super-elliptic
cavity surface. The material properties were assumed such that the thermal

conductivity (Eq. (51)) had ko =365.6 Wm™ ! K™, a=d=e=0,b= 1.0, and ¢
=-0.01 K~L. The flux specified on the outer spherical boundary was Qomer =

59.3 K m™L It was taken from the BEM analysis run corresponding to the desired
(target) configuration consisting of an unit sphere (having temperature-dependent
thermal conductivity) with a centered spherical cavity ripper = 0.5 m) subject to

well-posed Dirichlet boundary conditions (T outer = 100.0 K and Tinner = 50.0 K).
The run was terminated near the global minimum with an objective function value
of 0.32% when the DFP optimization algorithm nearly reached the fully converged
sphere-within-a-sphere configuration (Fig. 13b) in 50 optimization cycles. The



entire optimization procedure required 647 calls to the BEM analysis routine and
consumed approximately 2235 seconds of CPU time on an IBM 3090 computer.

(a) (b)

Figure 13 Demonstration of the three-dimensional inverse shape design when
overspecified boundary conditions were given on the entire outer spherical
boundary and nothin g was specified on the inner super-elliptic off-center cavity: a)
initial guess, and b) final converged answer.

6.2.4 Three-dimensional turbine blade wall thickness optimization.
This example involved the application of the inverse shape design techniqu_e to a

single internal coolant flow passage. The optimization objective was to determine
the appropriate wall thickness inward from the specified blade's outer surface that
yielded the desired overspecified thermal boundary data [24].

The surface of the three-dimensional coolant passage was generated at each
radial cross section of the blade by first determining the mean airfoil thickness curve
from the local blade airfoil geometry. At each blade cross section this mean
thickness curve was then reduced by a fraction of its total length from the leading
and trailing edges, pe and Ple, respectively. The inner airfoil contour was then
constructed by defining a wall thickness function versus the blade airfoil outer
contour arc length, s. The local wall thickness, t(s), was defined along a straight
ray from a point on the blade airfoil outer contour to the corresponding point on the
reduced mean thickness curve. The wall thickness t(s) was approximated by a
Chebyshev polynomial of degree n given as

n

() =~ D c; Pyy(s) - 5 (59)

=1

where the Chebyshev coefficients are



=

Cj= E zt[COS(M)]COS(nG — Dk -1/ 2)) (60)

k=1 n n
and Pi(s) = cos(j arccos s) 61)

The polynomial of equation can be truncated to a lower degree m << n due to the
nature of the Chebyshev approximation.

The design variables that made up the coolant passage geometry consisted
of m Chebyshev coefficients for each radial section of the blade in addition to the
two quantities pye and pye, that determine by what fraction the mean thickness curve
is reduced from the trailing and leading edges of each local blade airfoil. Each
turbine blade section between two consecutive radial cuts was discretised with 20
clustered quadrilateral surface panels around its outer surface in addition to the same
number of quadrilateral surface panels on its inner surface. There were also 20
quadrilateral panels covering the blade root cross section and 20 quadrilateral panels
covering the blade tip cross section. This means that the blade wall thickness at the
root and at the tip sections was discretised by single rows (Fig. 14a) of quadrilateral
panels. Consequently, we used a total of 200 quadrilateral surface panels
connected between 200 nodes at the panels' vertices. The desired temperature was
prescribed along the outer surface of the turbine blade according to a simple formula

Touer = Tpyy + (Tmax-Tmm)[cos(2Tcs/smax)]2 (62)

with Trin = 500.0 K and Tmax = 1000.0 K at the blade root section. Each of them
was increased by 50.0 K at each of the four remaining consecutive sections so that
their values at the blade tip section were Tpyin = 700.0 K and Tmax = 1200.0 K.
The three-dimensional blade surface temperature field is shown in Fig. 14b.

(b)

Figure 14 Computational grid (a) for the BEM on the initial guess of a three-
dimensional turbine blade with a single cooling passage and specified non-uniform
temperature distribution (b) on the outer surface of the blade.



In addition, a desired constant temperature was specified on the inner surface,

Tinner = 300.0 K. The reference coefficient of thermal conductivity was k, = 23.0
W m™1K~1 and the parameters of Eq. (51) werea=d=e =0, b= 1.0 and ¢ =

0.01 K1,
Next, a desired (target) configuration for the three-dimensional coolant
passage geometry was generated. The well-posed BEM was run once with the

desired temperature boundary conditions Touter and Tipper, The computed outer
surface non-uniform heat fluxes were then used as the overspecified boundary
conditions in the shape inverse design problem where the coolant flow passage
geometry was initially guessed. Figures 15a—15d illustrate the evolution of the
coolant passage geometry throughout the optimization process of minimizing the
least squares difference between the outer surface overspecified heat fluxes and the
outer surface heat fluxes computed on the intermediate hollow blade confi gurations,

Each figure (Figs. 15a~15d) Tepresents a consecutive cross-section of the turbine
blade showing nodes on the outer surface of the airfoil shape, the initial guess
geometry (finely dotted line), several intermittent contours depicting the coolant
passage cross-section geometry after every 10 iterations (dashed lines) and the
target configuration (solid line). The optimization process was completed after 46
iterations with the objective function reducing from an initial value of 74% to its
final value of 8.64 %. The process could be resubmitted in order to further refine
the coolant passage geometry. The entire optimization process required 2996 calls
to the BEM analysis routine and consumed approximately 2550 seconds of CPU
time on a CRAY C-90 single-processor computer.

Figure 15 Geometric history of the optimization of a single coolant flow passage
in a three-dimensional turbine blade showing sections at (a) p=0, (b) p=0.25, (c)

p=0.75,and (d) p = 1.0 subject to the specified temperatures and heat fluxes on
the blade hot surface and temperatures on the coolant passage wall.



6.3 Non-Destructive Detection of Cracks and Voids

The same methodology and accompanying software have been adapted to the non-
destructive detection of the number, sizes, shapes and locations of possible voids or
cracks inside an arbitrarily shaped solid object [18, 19]. Assuming that the voids
are free of any material and that the heat transfer inside the voids due to thermal
radiation is negligible, the boundary conditions on these inner boundaries will be
of the adiabatic (of the Neumann type). This methodology requires the user to
provide only outer boundary thermal data that can be collected by experimentation.
The BEM then uses the temperature on the outer boundary and the zero heat flux on
the boundaries of the guessed voids to compute the heat flux at the outer boundary.
It then compares these computed outer fluxes with the user-provided heat fluxes on
the outer boundary. If they are different, then the particular configuration of cracks
and voids submitted to the BEM analysis is incorrect. Then, the shapes, sizes and
locations of the guessed cracks and voids are perturbed and the new corresponding
heat fluxes are computed on the outer boundary. The comparison of the outer fluxes
is performed again and the entire procedure repeated until the difference is
satisfactorily small. The geometry perturbations of the cracks and voids is guided
by an optimization algorithm.

To test the feasibility of this methodology and the optimization algorithm, a
coated circular disk with a simple narrow vertical strai ght crack placed to the right
of the center of the disk was the actual or target geometry [18, 19]. An outside

temperature boundary condition was specified as Touter = (100.0 + 400.0 sin6) K.
Heat fluxes on the outer boundary of the disk corresponding to this internal crack
were computed by the BEM and used as the overspecified boundary conditions.
The initial guess geometry for the inverse problem was three vertical parallel cracks
each having zero heat flux assigned on its boundaries. During the optimization, the
lengths, locations of their centers, and the angles of inclination of each initially
guessed crack were allowed to vary. This corresponded to four design variables
per individual crack. This test case converged after 18 optimization cycles with a
DFP optimizer and completed after it reduced and eliminated the two incorrectly
guessed cracks. The capability of the code to detect simple thin cracks was thus
verified.

7 INVERSE UNSTEADY BOUNDARY CONDITION
PROBLEMS

In many problems involving unsteady cooling or heating of arbitrarily shaped
objects it is often desirable to maintain a specified local cooling rate in some parts of
the solid object. This can be achieved by determining the appropriate time-variation
of temperature at every point of the walls of a cooling/heating container that will

maintain the desired cooling rate at the desired interior points [32-36].
7.1 The Optimization Procedure

The surface temperature of the cooling container should be continuously adjusted in
time and space in order to maintain the specified local prescribed cooling rates
throughout the object. To implement this at every instant of time, the container wall
circumferential temperature variation was approximated using a Chebyshev
polynomial in terms of the scaled circumferential angle [33-35]. The coefficients
of the Chebyshev polynomial were adjusted iteratively in order to maintain the
desired cooling rates inside the object. The process starts by specifying an initial
wall temperature distribution and deducing the corresponding Chebyshev



coefficients. These will be the initial values for the coefficients. Next, the transient
temperature values are computed in the entire domain subject to the initial wall
temperature distribution. From this, the local cooling rates are computed at a
number of specified points inside the domain. A normalized cost function can then
be formed as a sum of least squares of deviations of the computed and the specified
local cooling rates. The new temperature distribution on the walls of the container
is determined by minimizing the cost function at the next time step during the
cooling process. Thus, the desired cooling rates are achieved throu ghout the object
by determining the Chebyshev coefficients representing the proper variation of
container wall temperatures at each instant of time.

7.2 Optimized Cryopreservation of Organs for Transplant Surgery

To demonstrate a practical application of this process, an actual canine kidney
cooling was approximated by three nested two-dimensional regions (Fig. 16). The
outer circular boundary represented the wall of a cooling container filled with a
cryopreservation gelatin thus eliminating a possibility of heat transfer by
convection. The two inner regions simulated the two distinct tissues of a kidney.

Each of the three subdomains had a different thermal diffusivity (o} = 0.00154 m?

s71 0y = 0.0169 m2 s™1, a3 = 0.0255 m? s~ 1). The entire domain was

discretized using 418 triangular isoparametric linear elements (Fig. 16) and 114
boundary nodes.

Figure 16 A triangular BEM grid for a three-domain model of a kidney in a
cylindrical cooler container.

The initial temperature of the configuration was uniform ( Tjpyi = 305.0 K).
Although each type of tissue had considerably different thermal properties and
optimal cooling rates, the desired cooling rate was specified to be 9T/ot = ~2.5 K

min~1 within every triangular element forming the domain approximating the two
types of kidney tissue. No cooling rate was prescribed in the cryopreservation



gelatin. A sixth order Chebyshev polynomial [33, 34] in terms of the
circumferential angle was used to represent the variable boundary temperature on
the boundary of the container. Instead of the Chebyshev polynomial one could use

a Bezier polynomial or a B-spline. Due to the low diffusivity of the

cryopreservation gelatin, the cooling rate was not optimized during the first 5
minutes of the problem. The relative average error of the cooling rate with the

initial container wall temperature kept fixed at T,,;; = 80.0 K was 11.7% after 10
minutes. In contrast, with optimization of the container wall temperatures
performed after every 30 seconds the relative error of the cooling rate was equal to
0.26%. The relative local cooling rate errors after 15 and 20 minutes were
consistently held to less than 1% when optimization was continuously used every
30 seconds. Circumferential variation of optimized container wall heat fluxes (Fig.
17a) and temperatures (Fig. 17b) indicates the potential of this method and the
feasibility of the enforcement of optimized local cooling rates.
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process with the objective of maintaining the specified local cooling rate throughout
the kidney at each instant of time.

8 RECOMMENDATIONS FOR FUTURE RESEARCH

We have demonstrated a number of concepts for achieving a solution of seemin gly
unsolvable (ill-posed) problems in heat conduction. We have utilized the BEM
because of its unique abilities to propagate the information from the boundaries
throughout the domain without the need for iterations. Consequently, the presented
methodologies are computationally efficient and robust. However, further
improvements in computational efficiency are possible especially in the field of



constrained optimization algorithms. Similarly, further improvements in the
computational efficiency and especially in reliability are warranted for the SVD type
matrix solution algorithms dealing with highly singular matrices.

It should be plausible to understand how optimization can be effectively
used to determine the coefficients of an arbitrary polynomial (Eq. (51)) describing
the unknown temperature-dependent heat conductivity of the solid material. This
opens up the possibility of determining the proper spatial variation of thermal
conductivity that will satisfy the desired overspecified thermal boundary conditions
on the object of a given size and shape. The method of inverse determination of
unknown thermal boundary conditions can easily be applied to objects composed of
subdomains made of different materials. If each of these subdomains has a
different temperature-dependent heat conductivity, our inverse method will become
iterative. Shape inverse design could be performed considerably more efficiently if
a hybrid optimization algorithm consisting of a gradient search and a non-gradient
search method is used [58]. An even more efficient method might be the use of
sensitivity analysis or an adjoint operator formulation [26]. In the case of unsteady
cooling or warming involving phase change it should be possible to incorporate the
latent heat effects via an apparent heat capacity while determining unsteady wall
temperatures that will produce local desired freezing or thawing rates.

Finally, these BEM algorithms for the solution of inverse problems in linear
and non-linear heat conduction can be modified and applied to inverse problems in
elasticity [59], fluid mechanics [60], electromagnetism [S0] and other field theories,
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